login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q * psi(q^8) / phi(-q) in powers of q where psi(), phi() are Ramanujan theta functions.
6

%I #32 Mar 12 2021 22:24:44

%S 1,2,4,8,14,24,40,64,101,156,236,352,518,752,1080,1536,2162,3018,4180,

%T 5744,7840,10632,14328,19200,25591,33932,44776,58816,76918,100176,

%U 129952,167936,216240,277476,354864,452392,574958,728568,920600,1160064

%N Expansion of q * psi(q^8) / phi(-q) in powers of q where psi(), phi() are Ramanujan theta functions.

%C Ramanujan theta functions: phi(q) (A000122), psi(q) (A010054).

%C Number 12 of the 14 eta-quotients listed in Table 2 of Moy 2013. - _Michael Somos_, Sep 19 2013

%H Seiichi Manyama, <a href="/A123655/b123655.txt">Table of n, a(n) for n = 1..1000</a>

%H Kevin Acres, David Broadhurst, <a href="https://arxiv.org/abs/1810.07478">Eta quotients and Rademacher sums</a>, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.

%H Richard Moy, <a href="http://arxiv.org/abs/1309.4320">Congruences among power series coefficients of modular forms</a>, arXiv:1309.4320

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q^2) * eta(q^16)^2 / (eta(q)^2 * eta(q^8)) in powers of q.

%F Euler transform of period 16 sequence [ 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 0, ...].

%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v * (1 + 4*u) * (1 + 2*v).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/8 * g(t) where q = exp(2 Pi i t) and g() is g.f. for A185338.

%F a(n) is odd iff n is an odd square. If n>2 is a power of 2 then the highest power of 2 dividing a(n) is (n/2)^3. - _Michael Somos_, Feb 18 2007

%F 4 * a(n) = A007096(n) unless n=0. -(-1)^n * a(n) = A208605(n). Convolution inverse of A185338.

%F G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k)) * (1 + x^(8*k))^2. _Michael Somos_, Sep 19 2013

%F a(2*n) = 2 * A107035(n). a(2*n + 1) = A093160(n). - _Michael Somos_, Sep 19 2013

%F a(n) ~ exp(sqrt(n)*Pi) / (2^(9/2) * n^(3/4)). - _Vaclav Kotesovec_, Nov 15 2017

%e G.f. = q + 2*q^2 + 4*q^3 + 8*q^4 + 14*q^5 + 24*q^6 + 40*q^7 + 64*q^8 + 101*q^9 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^4] / EllipticTheta[ 4, 0, q] / 2, {q, 0, n}]; (* _Michael Somos_, Sep 19 2013 *)

%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)), n))};

%Y Cf. A007096, A185338, A093160, A107035, A185338.

%K nonn

%O 1,2

%A _Michael Somos_, Oct 04 2006