login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (eta(q^2)eta(q^6)/(eta(q)eta(q^3)))^6 in powers of q.
7

%I #19 Mar 12 2021 22:24:44

%S 1,6,21,68,198,510,1248,2904,6393,13604,28044,55956,108982,207552,

%T 386622,707216,1271970,2250582,3925780,6757272,11483232,19290824,

%U 32057352,52722744,85884503,138644292,221885805,352241792,554892894

%N Expansion of (eta(q^2)eta(q^6)/(eta(q)eta(q^3)))^6 in powers of q.

%C Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

%C Expansion of q/(chi(-q)*chi(-q^3))^6 in powers of q where chi() is a Ramanujan theta function.

%H Seiichi Manyama, <a href="/A123653/b123653.txt">Table of n, a(n) for n = 1..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Euler transform of period 6 sequence [ 6, 0, 12, 0, 6, 0, ...].

%F G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)= u^2 -v*(1+12*u+64*u*v)

%F G.f.: x*(Product_{k>0} (1+x^k)*(1+x^(3k)))^6.

%F a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (64 * 2^(3/4) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015

%F Convolution inverse of A121666. - _Seiichi Manyama_, Mar 30 2017

%t nmax = 40; Rest[CoefficientList[Series[x * Product[((1+x^k) * (1+x^(3*k)))^6, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Sep 07 2015 *)

%o (PARI) {a(n)=local(A); if(n<1, 0, n--; A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^6+A)/eta(x+A)/eta(x^3+A))^6, n))}

%K nonn

%O 1,2

%A _Michael Somos_, Oct 04 2006