Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Nov 06 2022 07:48:08
%S 0,1,1,1,2,1,3,3,4,4,5,6,6,5,7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,
%T 15,15,15,16,16,17,17,18,18,19,19,20,20,21,21,22,22,23,23,24,24,25,25,
%U 26,26,27,28,28,28,29,29,30,29,31,31,32,32,33,33,34,34,35,35,36,36,37,37
%N Greatest k <= n/2 such that n divides binomial(n,k).
%H Reinhard Zumkeller, <a href="/A123621/b123621.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BinomialCoefficient.html">Binomial Coefficient</a>
%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>
%F A007318(n,a(n)) mod n = 0.
%F a(p) = floor(p/2) for primes p.
%t gk[n_]:=Module[{k=Floor[n/2]},While[!Divisible[Binomial[n,k],n],k--];k]; Array[gk,80] (* _Harvey P. Dale_, Nov 22 2013 *)
%o (PARI) a(n) = if (n>1, my(k=n\2); while (binomial(n,k) % n, k--); k, 0); \\ _Michel Marcus_, Nov 06 2022
%K nonn
%O 1,5
%A _Reinhard Zumkeller_, Oct 03 2006