Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 22 2021 08:12:07
%S 1,0,-2,1,0,0,2,0,-2,0,0,-2,2,0,0,1,0,0,2,0,-4,0,0,0,1,0,-2,2,0,0,2,0,
%T 0,0,0,-2,2,0,-4,0,0,0,2,0,0,0,0,-2,3,0,0,2,0,0,0,0,-4,0,0,0,2,0,-4,1,
%U 0,0,2,0,0,0,0,0,2,0,-2,2,0,0,2,0,-2,0,0,-4,0,0,0,0,0,0,4,0,-4,0,0,0,2,0,0,1,0,0,2,0,0
%N Expansion of (1 - b(q)) / 3 in powers of q where b(q) is a cubic AGM theta function.
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C Denoted by lambda(n) on page 4 (1.7) in Kassel and Reutenauer arXiv:1610.07793. - _Michael Somos_, Dec 10 2017
%H Seiichi Manyama, <a href="/A123477/b123477.txt">Table of n, a(n) for n = 1..1000</a>
%H Christian Kassel and Christophe Reutenauer, <a href="https://arxiv.org/abs/1610.07793">Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus</a>, arXiv preprint arXiv:1610.07793 [math.NT], 2016.
%F Moebius transform is period 9 sequence [1, -1, -3, 1, -1, 3, 1, -1, 0, ...].
%F a(n) is multiplicative and a(p^e) = -2 if p = 3 and e>0, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 2, 5 (mod 6).
%F a(3*n + 2) = 0. a(3*n + 1) = A033687(n), a(3*n) = -2*A002324(n).
%F -3*a(n) = A005928(n) unless n=0. |a(n)| = A113063(n).
%e G.f. = q - 2*q^3 + q^4 + 2*q^7 - 2*q^9 - 2*q^12 + 2*q^13 + q^16 + 2*q^19 + ...
%p A123477 := proc(n)
%p local a,pe,p,e;
%p a := 1;
%p for pe in ifactors(n)[2] do
%p p := op(1,pe) ;
%p e := op(2,pe) ;
%p if modp(p,6) = 1 then
%p a := a*(e+1) ;
%p elif modp(p,6) in {2,5} then
%p a := a*(1+(-1)^e)/2 ;
%p elif e > 0 then
%p a := -2*a ;
%p end if;
%p end do:
%p a ;
%p end proc:
%p seq(A123477(n),n=1..100) ; # _R. J. Mathar_, Feb 22 2021
%t a[ n_] := If[ n < 1, 0, DivisorSum[ n, {1, -1, -3, 1, -1, 3, 1, -1, 0} [[Mod[#, 9, 1]]] &]]; (* _Michael Somos_, Dec 10 2017 *)
%o (PARI) {a(n) = if( n<1, 0, sumdiv(n, d, [0, 1, -1, -3, 1, -1, 3, 1, -1] [d%9+1]))};
%o (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==3, -2, p%6==1, e+1, !(e%2))))};
%Y Cf. A002324, A005928, A033687, A113063.
%K sign,mult
%O 1,3
%A _Michael Somos_, Sep 27 2006