login
a(1) = 1, a(n) = Sum_{k=1}^{Pi(n)} a(n-k) for n > 1, where Pi(n) is the number of primes less than or equal to n.
0

%I #2 Mar 30 2012 17:35:16

%S 1,1,2,3,6,11,22,42,81,156,312,613,1226,2430,4818,9555,19110,38064,

%T 76128,151944,303275,605324,1210648,2418866,4832914,9656273,19293436,

%U 38548808,77097616,154119104,308238208,616324472,1232345669,2464086014

%N a(1) = 1, a(n) = Sum_{k=1}^{Pi(n)} a(n-k) for n > 1, where Pi(n) is the number of primes less than or equal to n.

%C Conjecture: lim_{n->infinity} a(n)/2^n > 0; appears to be about 0.1432645404.

%F a(1) = a(2) = 1, for p an odd prime, a(p) = 2a(p-1), otherwise a(n) = 2a(n-1) - a(n - pi(n) - 1).

%Y Cf: A000720, A000045, A001590.

%K nonn

%O 1,3

%A _Franklin T. Adams-Watters_, Oct 11 2006