OFFSET
1,2
COMMENTS
This continued fraction allows us to see that tan(1/sqrt(2)), sin(1/sqrt(2)), cos(1/sqrt(2)) are irrational. More generally, for any fixed positive integer m, the continued fraction for sqrt(m)*tan(1/sqrt(m)) is given by a(12*n-11) = a(12*n-9) = a(12*n-7) = a(12*n-5) = a(12*n-3) = a(12*n-1) = 1; a(12*n-10) = 12*m*n - 9*m - 2; a(12*n-8) = 12*n-9; a(12*n-6) = 12*m*n - 5*m - 2; a(12*n-4) = 12*n-5; a(12*n-2) = 12*m*n - m - 2; a(12*n) = 12*n-1.
From Peter Bala, Oct 02 2023: (Start)
Further to the above, the simple continued fraction expansion for sqrt(2)*tan(sqrt(2)/2) may be derived by setting z = sqrt(2)/2 in Lambert's continued fraction tan(z) = z/(1 - z^2/(3 - z^2/(5 - ... ))) and, after using an equivalence transformation, making repeated use of the identity 1/(n - 1/m) = 1/((n - 1) + 1/(1 + 1/(m - 1))) together with further equivalence transformations.
The same approach can be used to find the simple continued fraction expansions for the numbers sqrt(N)*tan(sqrt(N)/(k*N)) and (sqrt(N)/N)*tan(sqrt(N)/(k*N)) for k >= 1. An example is given below. (End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
For n >= 1 we have a(12*n-11) = a(12*n-9) = a(12*n-7) = a(12*n-5) = a(12*n-3) = a(12*n-1) = 1; a(12*n-10) = 24*n-20; a(12*n-8) = 12*n-9; a(12*n-6) = 24*n-12; a(12*n-4) = 12*n-5; a(12*n-2) = 24*n-4; a(12*n) = 12*n-1.
Empirical g.f.: x*(x^7 - x^6 + 4*x^5 - x^4 + 3*x^3 + x^2 + 4*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Jun 28 2013
a(2*n-1) = 1, a(4*n) = 4*n-1 and a(4*n-2) = 8*n-4 for n >= 1. - Peter Bala, Oct 02 2023
EXAMPLE
From Peter Bala Oct 03 2023: (Start)
For k > 1, the simple continued fraction expansion of sqrt(2)*tan(sqrt(2)/(2*k)) is [0; k - 1, 1, 2*3*k - 2, 1, 5*k - 2, 1, 2*7*k - 2, 1, 9*k - 2, 1, 2*11*k - 2, 1, 13*k - 2, 1, 2*15*k - 2, 1, ...], and the simple continued fraction expansion of (sqrt(2)/2)*tan(sqrt(2)/(2*k)) is [0; 2*k - 1, 1, 3*k - 2, 1, 2*5*k - 2, 1, 7*k - 2, 1, 2*9*k - 2, 1, 11*k - 2, 1, 2*13*k - 2, 1, 15*k - 2, 1, ...]. (End)
MAPLE
cfrac(sqrt(2)*tan(1/sqrt(2)), 81, 'quotients'); # Muniru A Asiru, Oct 13 2018
MATHEMATICA
ContinuedFraction[Sqrt[2]*Tan[1/Sqrt[2]], 100] (* G. C. Greubel, Oct 12 2018 *)
PROG
(PARI) contfrac(sqrt(2)*tan(1/sqrt(2))) \\ G. C. Greubel, Oct 12 2018
(Magma) continuedFraction(Sqrt(2)*Tan(1/Sqrt(2))); // G. C. Greubel, Oct 12 2018
CROSSREFS
KEYWORD
nonn,cofr
AUTHOR
Benoit Cloitre, Oct 08 2006
STATUS
approved