login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123251
Continued fraction for sqrt(2)*tan(1/sqrt(2)).
2
1, 4, 1, 3, 1, 12, 1, 7, 1, 20, 1, 11, 1, 28, 1, 15, 1, 36, 1, 19, 1, 44, 1, 23, 1, 52, 1, 27, 1, 60, 1, 31, 1, 68, 1, 35, 1, 76, 1, 39, 1, 84, 1, 43, 1, 92, 1, 47, 1, 100, 1, 51, 1, 108, 1, 55, 1, 116, 1, 59, 1, 124, 1, 63, 1, 132, 1, 67, 1, 140, 1, 71, 1, 148, 1, 75, 1, 156, 1, 79, 1
OFFSET
1,2
COMMENTS
This continued fraction allows us to see that tan(1/sqrt(2)), sin(1/sqrt(2)), cos(1/sqrt(2)) are irrational. More generally, for any fixed positive integer m, the continued fraction for sqrt(m)*tan(1/sqrt(m)) is given by a(12*n-11) = a(12*n-9) = a(12*n-7) = a(12*n-5) = a(12*n-3) = a(12*n-1) = 1; a(12*n-10) = 12*m*n - 9*m - 2; a(12*n-8) = 12*n-9; a(12*n-6) = 12*m*n - 5*m - 2; a(12*n-4) = 12*n-5; a(12*n-2) = 12*m*n - m - 2; a(12*n) = 12*n-1.
From Peter Bala, Oct 02 2023: (Start)
Further to the above, the simple continued fraction expansion for sqrt(2)*tan(sqrt(2)/2) may be derived by setting z = sqrt(2)/2 in Lambert's continued fraction tan(z) = z/(1 - z^2/(3 - z^2/(5 - ... ))) and, after using an equivalence transformation, making repeated use of the identity 1/(n - 1/m) = 1/((n - 1) + 1/(1 + 1/(m - 1))) together with further equivalence transformations.
The same approach can be used to find the simple continued fraction expansions for the numbers sqrt(N)*tan(sqrt(N)/(k*N)) and (sqrt(N)/N)*tan(sqrt(N)/(k*N)) for k >= 1. An example is given below. (End)
LINKS
FORMULA
For n >= 1 we have a(12*n-11) = a(12*n-9) = a(12*n-7) = a(12*n-5) = a(12*n-3) = a(12*n-1) = 1; a(12*n-10) = 24*n-20; a(12*n-8) = 12*n-9; a(12*n-6) = 24*n-12; a(12*n-4) = 12*n-5; a(12*n-2) = 24*n-4; a(12*n) = 12*n-1.
Empirical g.f.: x*(x^7 - x^6 + 4*x^5 - x^4 + 3*x^3 + x^2 + 4*x + 1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Jun 28 2013
a(2*n-1) = 1, a(4*n) = 4*n-1 and a(4*n-2) = 8*n-4 for n >= 1. - Peter Bala, Oct 02 2023
EXAMPLE
From Peter Bala Oct 03 2023: (Start)
For k > 1, the simple continued fraction expansion of sqrt(2)*tan(sqrt(2)/(2*k)) is [0; k - 1, 1, 2*3*k - 2, 1, 5*k - 2, 1, 2*7*k - 2, 1, 9*k - 2, 1, 2*11*k - 2, 1, 13*k - 2, 1, 2*15*k - 2, 1, ...], and the simple continued fraction expansion of (sqrt(2)/2)*tan(sqrt(2)/(2*k)) is [0; 2*k - 1, 1, 3*k - 2, 1, 2*5*k - 2, 1, 7*k - 2, 1, 2*9*k - 2, 1, 11*k - 2, 1, 2*13*k - 2, 1, 15*k - 2, 1, ...]. (End)
MAPLE
cfrac(sqrt(2)*tan(1/sqrt(2)), 81, 'quotients'); # Muniru A Asiru, Oct 13 2018
MATHEMATICA
ContinuedFraction[Sqrt[2]*Tan[1/Sqrt[2]], 100] (* G. C. Greubel, Oct 12 2018 *)
PROG
(PARI) contfrac(sqrt(2)*tan(1/sqrt(2))) \\ G. C. Greubel, Oct 12 2018
(Magma) continuedFraction(Sqrt(2)*Tan(1/Sqrt(2))); // G. C. Greubel, Oct 12 2018
CROSSREFS
Cf. A123168.
Sequence in context: A323072 A055032 A039930 * A368922 A327357 A334810
KEYWORD
nonn,cofr
AUTHOR
Benoit Cloitre, Oct 08 2006
STATUS
approved