%I #19 Jun 12 2024 03:33:30
%S 1,1,1,1,2,1,4,7,3,1,10,14,4,-1,8,76,105,29,-8,1,26,165,204,43,-20,1,
%T 12,304,1904,2343,487,-232,12,1,50,772,3986,4564,750,-506,44,-1,16,
%U 788,12048,61872,70681,11513,-7864,692,-16,1,82,2347,28032,127536,138126,17956,-16434,1889,-76,1
%N Irregular triangle: p(k, x) = 2*x*p(k-1, x) + (1 - x^2)*p(k-2, x) for even k, p(k, x) = 2*(k-1)*p(k-1, x) - x*p(k-2, x) for odd k.
%D E. S. R. Gopal, Specific Heats at Low Temperatures, Plenum Press, New York, 1966, pp. 36-40.
%D S. M. Ulam, Problems in Modern Mathematics, John Wiley and Sons, New York, 1960, p. 110.
%H B. H. Margolius, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/MARGOLIUS/inversions.html">Permutations with inversions</a>, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
%F p(k, x) = 2*(k - 1)*p(k - 1, x) - x*p(k - 2, x) if k is odd,
%F 2*x*p(k - 1, x) + (1 - x^2)*p(k - 2, x) if k is even.
%e Triangle starts:
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 4, 7, 3;
%e 1, 10, 14, 4, -1;
%e 8, 76, 105, 29, -8;
%e 1, 26, 165, 204, 43, -20, 1;
%t p[0, x] = 1; p[1, x] = x + 1;
%t p[k_, x_] := p[k, x] = If[Mod[k, 2] == 1, 2*(k - 1)*p[k - 1, x] - x*p[k - 2,x], 2*x*p[k - 1, x] + (1 - x^2)*p[k - 2, x]];
%t w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
%K uned,tabf,sign
%O 1,5
%A _Roger L. Bagula_, Oct 07 2006