login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.
13

%I #42 Feb 06 2021 08:07:52

%S 1,1,-2,2,-8,7,6,-36,63,-34,24,-192,504,-544,209,120,-1200,4200,-6800,

%T 5225,-1546,720,-8640,37800,-81600,94050,-55656,13327,5040,-70560,

%U 370440,-999600,1536150,-1363572,653023,-130922,40320,-645120,3951360,-12794880

%N Triangle of coefficients of n!*(1 - x)^n*L_n(x/(1 - x)), where L_n(x) is the Laguerre polynomial.

%C The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A021009(n,j)*x^j*(1 - x)^(n - j).

%D Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th printing. New York: Dover, 1972, p. 782.

%D Gengzhe Chang and Thomas W. Sederberg, Over and Over Again, The Mathematical Association of America, 1997, p. 164, figure 26.1.

%H G. C. Greubel, <a href="/A123202/b123202.txt">Table of n, a(n) for n = 0..5150</a> (Rows n=0..100 of triangle, flattened; offset corrected by _Georg Fischer_, Jan 31 2019)

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LaguerrePolynomial.html">Laguerre Polynomial</a>

%F T(n, k) = [x^k] (n!*L_n(x)*(1 - x)^n) with L_n(x) the Laguerre polynomial after substituting x by x/(1 - x). - _Peter Luschny_, Jan 05 2015

%F From _Franck Maminirina Ramaharo_, Oct 13 2018: (Start)

%F G.f.: exp(-x*y/(1 - (1 - x)*y))/(1 - (1 - x)*y).

%F T(n,1) = A000142(n).

%F T(n,2) = -A052582(n).

%F T(n,n) = A002720(n). (End)

%e Triangle begins:

%e 1;

%e 1, -2;

%e 2, -8, 7;

%e 6, -36, 63, -34;

%e 24, -192, 504, -544, 209;

%e 120, -1200, 4200, -6800, 5225, -1546;

%e 720, -8640, 37800, -81600, 94050, -55656, 13327;

%e ... reformatted. - _Franck Maminirina Ramaharo_, Oct 13 2018

%p M := (n,x) -> n!*subs(x=(x/(1-x)),orthopoly[L](n,x))*(1-x)^n:

%p seq(print(seq(coeff(simplify(M(n,x)),x,k),k=0..n)),n=0..6); # _Peter Luschny_, Jan 05 2015

%t w = Table[n!*CoefficientList[LaguerreL[n, x], x], {n, 0, 10}];

%t v = Table[CoefficientList[Sum[w[[n + 1]][[m + 1]]*x^ m*(1 - x)^(n - m), {m, 0, n}], x], {n, 0, 10}]; Flatten[v]

%o (Maxima) create_list(ratcoef(n!*(1 - x)^n*laguerre(n, x/(1 - x)), x, k), n, 0, 10, k, 0, n); /* _Franck Maminirina Ramaharo_, Oct 13 2018 */

%o (PARI) row(n) = Vecrev(n!*(1-x)^n*pollaguerre(n, 0, x/(1 - x))); \\ _Michel Marcus_, Feb 06 2021

%Y Cf. A122753, A123018, A123019, A123021, A123027, A123199, A123202, A123217, A123221.

%K sign,tabl

%O 0,3

%A _Roger L. Bagula_, Oct 04 2006

%E Edited by _N. J. A. Sloane_, Jun 12 2007

%E Edited, new name, and offset corrected by _Franck Maminirina Ramaharo_, Oct 13 2018