Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #44 Sep 08 2022 08:45:28
%S 2,3,10,7,18,11,26,15,34,19,42,23,50,27,58,31,66,35,74,39,82,43,90,47,
%T 98,51,106,55,114,59,122,63,130,67,138,71,146,75,154,79,162,83,170,87,
%U 178,91,186,95,194,99,202,103,210,107,218,111,226,115,234,119,242,123
%N Continued fraction for c=sqrt(2)*(exp(sqrt(2))+1)/(exp(sqrt(2))-1). a(2*n-1) = 8*n-6, a(2*n) = 4*n-1.
%C This continued fraction shows exp(sqrt(2)) is irrational.
%C If a(0)=-1 and offset 0: a(6*n) - a(6*n+1) + a(6*n+2) = 0, a(6*n +3) - 4*a(6*n+4) + a(6*n+5) = 0.
%C Conjecture: Numerator of 4/n - 2/n^2. - _Wesley Ivan Hurt_, Jul 11 2016
%D J. Borwein and D. Bailey, Mathematics by experiment, plausible reasoning in the 21st Century, A. K. Peters, p. 77
%D J. Borwein and K. Devlin, The computer as crucible: an introduction to experimental mathematics, A. K. Peters 2009, p. 91.
%H G. C. Greubel, <a href="/A123167/b123167.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1).
%F a(n) = - A123168(2 - n) for all n in Z unless n = 1. - _Michael Somos_, Feb 24 2012
%F From _Colin Barker_, Feb 08 2012: (Start)
%F Empirical g.f.: x*(2+3*x+6*x^2+x^3)/(1-2*x^2+x^4).
%F Empirical a(n) = 2*a(n-2) - a(n-4). (End)
%e c = 2.3227261394604270...
%p A123167 := proc(n)
%p if type(n,'even') then
%p 2*n-1 ;
%p else
%p 4*n-2 ;
%p end if;
%p end proc: # _R. J. Mathar_, Jul 25 2013
%t a[ n_] := (2 n - 1) 2^Mod[n, 2]; (* _Michael Somos_, Apr 25 2015 *)
%o (PARI) {a(n) = (2*n - 1) * 2^(n%2)}; \\ _Michael Somos_, Feb 04 2012
%o (Magma) [(2*n-1)*2^(n mod 2): n in [1..50]]; // _G. C. Greubel_, Jan 27 2018
%o (GAP) a := [2,3,10,7];; for n in [5..10^3] do a[n] := 2*a[n-2] - a[n-4]; od; a; # _Muniru A Asiru_, Jan 28 2018
%Y Cf. A123168.
%K nonn,cofr
%O 1,1
%A _Benoit Cloitre_, Oct 02 2006