login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123081
Infinite square array read by antidiagonals: T(n,k) = Bell(n+k) = A000110(n+k).
1
1, 1, 1, 2, 2, 2, 5, 5, 5, 5, 15, 15, 15, 15, 15, 52, 52, 52, 52, 52, 52, 203, 203, 203, 203, 203, 203, 203, 877, 877, 877, 877, 877, 877, 877, 877, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 4140, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 21147, 115975, 115975, 115975, 115975
OFFSET
0,4
COMMENTS
Alternatively, triangle read by rows in which row n (n >= 0) contains A000110(n) repeated n+1 times.
Row sums = A052887: 1, 2, 6, 20, 75, 312, ... A127568 = Q * M n-th row is composed of n+1 terms of A000110(n).
LINKS
W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16. [From N. J. A. Sloane, Feb 07 2009]
FORMULA
M * Q, as infinite lower triangular matrices; M = the Bell sequence, A000110 in the main diagonal and the rest zeros. Q = (1; 1, 1; 1, 1, 1; ...)
EXAMPLE
Square array begins:
1, 1, 2, 5, 15, 52, 203, 877, ...;
1, 2, 5, 15, 52, 203, 877, 4140, ...;
2, 5, 15, 52, 203, 877, 4140, 21147, ...;
5, 15, 52, 203, 877, 4140, 21147, 115975, ...;
15, 52, 203, 877, 4140, 21147, 115975, 678570, ...;
52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...;
203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, ...;
877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, ...;
First few rows of the triangle:
1;
1, 1;
2, 2, 2;
5, 5, 5, 5;
15, 15, 15, 15, 15;
52, 52, 52, 52, 52, 52;
203, 203, 203, 203, 203, 203, 203;
MATHEMATICA
Table[BellB[n], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 21 2021 *)
PROG
(PARI) B(n)=sum(k=0, n, stirling(n, k, 2));
for(n=0, 20, for(k=0, n, print1(B(n), ", "))); \\ Joerg Arndt, Apr 21 2014
(Magma) [Bell(n): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2021
(Sage) flatten([[bell_number(n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 21 2021
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Jan 19 2007
EXTENSIONS
Edited by N. J. A. Sloane, Feb 07 2009
Added more terms, Joerg Arndt, Apr 21 2014
STATUS
approved