OFFSET
0,4
COMMENTS
LINKS
G. C. Greubel, Antidiagonal rows n = 0..50, flattened
W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16. [From N. J. A. Sloane, Feb 07 2009]
FORMULA
M * Q, as infinite lower triangular matrices; M = the Bell sequence, A000110 in the main diagonal and the rest zeros. Q = (1; 1, 1; 1, 1, 1; ...)
EXAMPLE
Square array begins:
1, 1, 2, 5, 15, 52, 203, 877, ...;
1, 2, 5, 15, 52, 203, 877, 4140, ...;
2, 5, 15, 52, 203, 877, 4140, 21147, ...;
5, 15, 52, 203, 877, 4140, 21147, 115975, ...;
15, 52, 203, 877, 4140, 21147, 115975, 678570, ...;
52, 203, 877, 4140, 21147, 115975, 678570, 4213597, ...;
203, 877, 4140, 21147, 115975, 678570, 4213597, 27644437, ...;
877, 4140, 21147, 115975, 678570, 4213597, 27644437, 190899322, ...;
First few rows of the triangle:
1;
1, 1;
2, 2, 2;
5, 5, 5, 5;
15, 15, 15, 15, 15;
52, 52, 52, 52, 52, 52;
203, 203, 203, 203, 203, 203, 203;
MATHEMATICA
Table[BellB[n], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 21 2021 *)
PROG
(PARI) B(n)=sum(k=0, n, stirling(n, k, 2));
for(n=0, 20, for(k=0, n, print1(B(n), ", "))); \\ Joerg Arndt, Apr 21 2014
(Magma) [Bell(n): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 21 2021
(Sage) flatten([[bell_number(n) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 21 2021
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Jan 19 2007
EXTENSIONS
Edited by N. J. A. Sloane, Feb 07 2009
Added more terms, Joerg Arndt, Apr 21 2014
STATUS
approved