login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123028
a(n) = (3*n^2 + 3*n + 1)*a(n-2), for n>2, with a(0) = a(1) = 1.
1
1, 1, 19, 37, 1159, 3367, 147193, 569023, 31940881, 154205233, 10572431611, 61219477501, 4958470425559, 33487054193047, 3128794838527729, 24144166073186887, 2556225383077154593, 22188488621258749153
OFFSET
0,3
LINKS
FORMULA
a(n) = n!*b(n), where b(n) = (3*n*(n+1) + 1)*b(n-2)/(n*(n-1)), b(0) = b(1) = 1.
a(n) = A003215(n) * a(n-2), n>2.
MATHEMATICA
a[n_]:= a[n]= If[n<2, 1, (3*n^2 +3*n +1)*a[n-2]]; Table[a[n], {n, 0, 30}]
nxt[{n_, a_, b_}]:={n+1, b, a(3(n+1)^2+3(n+1)+1)}; NestList[nxt, {1, 1, 1}, 20][[All, 2]] (* Harvey P. Dale, Jan 08 2023 *)
PROG
(Magma)
function a(n)
if n lt 2 then return 1;
else return (3*n*(n+1) +1)*a(n-2);
end if; return a;
end function;
[a(n): n in [0..30]]; // G. C. Greubel, Jul 20 2021
(Sage)
def a(n): return 1 if (n<2) else (3*n*(n+1) +1)*a(n-2)
[a(n) for n in (0..30)] # G. C. Greubel, Jul 20 2021
CROSSREFS
Sequence in context: A111441 A144594 A287310 * A067205 A196185 A040342
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 25 2006
EXTENSIONS
Definition replaced by recurrence - the Assoc. Eds. of the OEIS, Mar 27 2010
Edited by G. C. Greubel, Jul 20 2021
STATUS
approved