%I #21 Oct 09 2020 03:39:56
%S 0,1,134217728,7625597484987,18014398509481984,7450580596923828125,
%T 1023490369077469249536,65712362363534280139543,
%U 2417851639229258349412352,58149737003040059690390169
%N 27th powers: a(n) = n^27.
%H Amiram Eldar, <a href="/A122968/b122968.txt">Table of n, a(n) for n = 0..10000</a>
%F Totally multiplicative sequence with a(p) = p^27 for prime p. Multiplicative sequence with a(p^e) = p^(27e). - _Jaroslav Krizek_, Nov 01 2009
%F From _Amiram Eldar_, Oct 09 2020: (Start)
%F Dirichlet g.f.: zeta(s-27).
%F Sum_{n>=1} 1/a(n) = zeta(27).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = 67108863*zeta(27)/67108864. (End)
%t lst={}; Do[AppendTo[lst,n^27],{n,0,4!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 15 2009 *)
%t Range[0,10]^27 (* _Harvey P. Dale_, Dec 17 2011 *)
%Y Cf. A010812, A010813, A089081.
%K mult,nonn,easy
%O 0,3
%A _Franklin T. Adams-Watters_, Oct 27 2006