

A122901


The exponent m of the minimum prime of the form n^(2^m) + (n+1)^(2^m) = A122900[n], or 0 if such prime does not exist or if it is still not found.


3



1, 1, 2, 1, 1, 2, 1, 2, 1, 5, 0, 1, 2, 1, 0, 2, 1, 0, 1, 0, 4, 1, 3, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 4, 1, 2, 0, 4, 0, 1, 2, 0, 1, 0, 0, 0, 2, 0, 4, 0, 0, 9, 1, 0, 0, 2, 0, 1, 3, 2, 2, 1, 1, 0, 1, 0, 2, 4, 3, 0, 2, 1, 4, 0, 1, 0, 1, 1, 8, 1, 2, 2, 1, 0, 0, 4, 0, 6, 4, 1, 2, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Corresponding minimum primes of the form n^(2^m) + (n+1)^(2^m) are A122900[n] = {5,13,337,41,61,3697,113,10657,181,2211377674535255285545615254209921,...}. Currently a(n) = 0 for n = {11,15,18,20,28,44,46,49,51,52,53,55,57,58,61,62,64,71,73,77,81,83,91,92,94,...}. All n<100 and 1<k<2^10 are checked. The first occurrence of exponent m>0 in a(n) is listed in A122902[n] ={1,3,23,21,10,95,...}.


LINKS

Table of n, a(n) for n=1..100.


CROSSREFS

Cf. A122900, A122902.
Sequence in context: A207409 A013632 A080121 * A001917 A240545 A091591
Adjacent sequences: A122898 A122899 A122900 * A122902 A122903 A122904


KEYWORD

hard,nonn


AUTHOR

Alexander Adamchuk, Sep 18 2006


STATUS

approved



