login
Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.
1

%I #11 Jul 22 2024 23:30:45

%S 1,2,6,10,6,42,60,20,28,308,390,90,70,154,2310,2652,468,252,308,924,

%T 17556,18564,2652,1092,924,1540,5852,134596,132600,15912,5304,3432,

%U 3960,8360,38456,1038312,961350,99450,27846,14586,12870,18810,48070

%N Array of T(n,m)=1*5*...*(4n-3)*3*7*...*(4m-1)*2^(n+m)/(n+m)! by antidiagonals.

%C T(n,m)=2*A(m,n) in Problem A10527 Solution.

%H V. Pasol, <a href="https://www.jstor.org/stable/2974937">Problem 10527</a>, Amer. Math. Monthly, 103 (1996), p. 427; <a href="https://www.jstor.org/stable/2974489">Is it an integer: solution to problem 10527</a>, Amer. Math. Monthly, 104 (1997), 980-981.

%F T(n,m) = T(n,m-1)*(8*m-2)/(n+m) = T(n-1,m)*(8*n-6)/(n+m). T(0,0) = 1.

%e 1 6 42 308 2310 17556 ...

%e 2 6 28 154 924 5852 ...

%e 10 20 70 308 1540 8360 ...

%e 60 90 252 924 3960 18810 ...

%e 390 468 1092 3432 12870 54340 ...

%e 2652 2652 5304 14586 48620 184756 ...

%e 18564 15912 27846 68068 204204 705432 ...

%e 132600 99450 154700 340340 928200 2939300 ...

%e 961350 640900 897260 1794520 4486300 13113800 ...

%e 7049900 4229940 5383560 9869860 22776600 61822200 ...

%p A122882 := proc(n,m)

%p mul(4*i-3,i=1..n)*mul(4*i-1,i=1..m) ;

%p %*2^(n+m)/(n+m)! ;

%p end proc: # _R. J. Mathar_, Sep 24 2021

%o (PARI) {T(n,m)=if(n<0||m<0, 0, 2^(n+m)/(n+m)!*prod(k=1, m, 4*k-1)*prod(k=1, n, 4*k-3))}

%Y Cf. A004981(n)=T(n, 0), A004982(n)=T(0, n), A001448(n)=T(n, n).

%K nonn,tabl,easy

%O 0,2

%A _Michael Somos_, Sep 16 2006