login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122881
Triangle read by rows: number of Catalan paths of 2n steps of all values less than or equal to m.
1
1, 1, 2, 1, 2, 5, 1, 2, 5, 13, 1, 2, 5, 14, 34, 1, 2, 5, 14, 42, 89, 1, 2, 5, 14, 42, 131, 233, 1, 2, 5, 14, 42, 132, 417, 610, 1, 2, 5, 14, 42, 132, 429, 1341, 1597, 1, 2, 5, 14, 42, 132, 429, 1429, 4334, 4181
OFFSET
1,3
COMMENTS
Convergents of k-th diagonals relate to (2k+3)-polygons; e.g., right border relates to the pentagon (N=5), next border relates to the heptagon (N=7). Convergents of the diagonals are 2 + 2*cos(2*Pi/N) and are roots to Morgan-Voyce polynomials. k2 diagonal = A080937, number of Catalan paths of 2n steps of all values less than or equal to 5. k3 diagonal = A080938, number of Catalan paths of 2n steps of all values less than or equal to 7.
FORMULA
Begin with polygonal matrices of the form (exemplified by the Heptagonal matrix M3: [1, 1, 1; 1, 1, 0; 1, 0, 0]). Let matrix P3 = 1 / M3^2; then for n X n matrices P2, P3, P4...perform P^n * [1, 0, 0] letting this vector = k-th diagonal of the triangle.
EXAMPLE
For the right border, odd-indexed Fibonacci numbers (1, 2, 5, 13, 34...), we begin with (M2) = [1, 1; 1, 0], then P2 = [1, -1; -1, 2] = 1/(M2)^2. Performing (P2)^n * [1,0] we extract the left vector (1, 2, 5, 13, ...), making it the right border of the triangle, k1 diagonal.
For the next diagonal going to the left, we begin with the Heptagonal matrix M3 = [1, 1, 1; 1, 1, 0; 1, 0, 0], take the inverse square (P3) and then perform the analogous operation getting 1, 2, 5, 14, 42, ...
First few rows of the triangle are:
1;
1, 2;
1, 2, 5;
1, 2, 5, 13;
1, 2, 5, 14, 34;
1, 2, 5, 14, 42, 89;
1, 2, 5, 14, 42, 131, 233;
1, 2, 5, 14, 42, 132, 417, 610;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 16 2006
STATUS
approved