Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 May 20 2023 15:06:17
%S 1,0,1,6,39,284,2305,20682,203651,2186744,25463925,319989030,
%T 4320183527,62412737460,961264517369,15730347890082,272650924761195,
%U 4991218317261808,96248879172426557,1950405560049871134,41440841509597888495,921333064567137032620,21392807067461981820417
%N Number of independent generators of degree n of the algebra of Free quasi-symmetric functions (or Malvenuto-Reutenauer algebra of permutations) as a dendriform dialgebra (i.e., number of totally primitive elements).
%C a(n) = (n-2)*A003319(n-1) for n >= 2 (result of Foissy). For instance 39 = 3 * 13 and 284 = 4 * 71. - _F. Chapoton_, Apr 26 2023
%H G. Duchamp, F. Hivert and J.-Y. Thibon, <a href="https://arxiv.org/abs/math/0105065">Noncommutative symmetric functions VI: Free quasi-symmetric functions and related algebras</a>, arXiv:math/0105065 [math.CO], 2001; Internat. J. Alg. Comp. 12 (2002), 671-717
%H L. Foissy, <a href="https://arxiv.org/abs/math/0505207">Bidendriform bialgebras, trees and free quasi-symmetric functions</a>, arXiv:math/0505207 [math.RA], 2005.
%H L. Foissy, <a href="https://doi.org/10.1016/j.aim.2013.03.007">Plane posets, special posets, and permutations</a>, Adv. Math. 240, 24-60 (2013).
%H L. Foissy, <a href="https://doi.org/10.1090/conm/539/10629">Primitive elements of the Hopf algebra of free quasi-symmetric functions</a>, Contemp. Math. 539, Amer. Math. Soc., 2011.
%H Jean-Christophe Novelli and Jean-Yves Thibon, <a href="http://arxiv.org/abs/0806.3682">Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions</a> (2008); arXiv:0806.3682 [math.CO]; Discrete Math. 310 (2010), no. 24, 3584-3606.
%F G.f.: (f(t)-1)/f(t)^2, where f(t)=sum(n!*t^n,n>=0)
%F a(n) ~ n! * (1 - 4/n + 1/n^2 - 3/n^3 - 34/n^4 - 313/n^5 - 3189/n^6 - 36670/n^7 - 471381/n^8 - 6700559/n^9 - 104359132/n^10 - ...). - _Vaclav Kotesovec_, Feb 13 2019
%t terms = 23; f[t_] = 1 + Sum[n! t^n, {n, 1, terms+1}];
%t CoefficientList[(f[t]-1)/f[t]^2 + O[t]^(terms+1), t] // Rest (* _Jean-François Alcover_, Feb 13 2019 *)
%K nonn
%O 1,4
%A Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 23 2006