login
A122796
Connell (3,5)-sum sequence (partial sums of the (3,5)-Connell sequence)
7
1, 3, 8, 16, 27, 41, 58, 76, 97, 121, 148, 178, 211, 247, 286, 328, 373, 421, 470, 522, 577, 635, 696, 760, 827, 897, 970, 1046, 1125, 1207, 1292, 1380, 1471, 1565, 1660, 1758, 1859, 1963, 2070, 2180, 2293, 2409, 2528, 2650, 2775, 2903, 3034, 3168, 3305, 3445, 3588, 3734, 3883, 4035, 4190, 4346, 4505, 4667, 4832, 5000, 5171, 5345, 5522, 5702, 5885, 6071, 6260, 6452, 6647, 6845
OFFSET
1,2
LINKS
Grady D. Bullington, The Connell Sum Sequence, J. Integer Seq. 10 (2007), Article 07.2.6. (includes direct formula for a(n))
Douglas E. Iannucci and Donna Mills-Taylor, On Generalizing the Connell Sequence, J. Integer Sequences, Vol. 2, 1999, #99.1.7.
FORMULA
a(n) = (n-th triangular number)-n+(n-th partial sum of A122799).
KEYWORD
nonn,easy
AUTHOR
Grady Bullington (bullingt(AT)uwosh.edu), Sep 14 2006
STATUS
approved