login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122792
Expansion of eta(q^2)^2/(eta(q)eta(q^3)) in powers of q.
4
1, 1, 0, 2, 1, 0, 4, 2, 0, 6, 4, 0, 10, 6, 0, 16, 9, 0, 24, 14, 0, 36, 20, 0, 52, 29, 0, 74, 42, 0, 104, 58, 0, 144, 80, 0, 198, 110, 0, 268, 148, 0, 360, 198, 0, 480, 264, 0, 634, 347, 0, 832, 454, 0, 1084, 592, 0, 1404, 764, 0, 1808, 982, 0, 2316, 1257, 0, 2952, 1598, 0
OFFSET
0,4
LINKS
FORMULA
Euler transform of period 6 sequence [ 1, -1, 2, -1, 1, 0, ...].
G.f.: Product_{k>0} (1-x^k)^2/(1+x^k+x^(2k)). a(3n+2)=0.
G.f.: Product_{i>0} 1/(1 + Sum_{j>0} (-1)^j*j*q^(j*i)). - Seiichi Manyama, Oct 08 2017
MATHEMATICA
QP = QPochhammer; s = QP[q^2]^2/(QP[q]*QP[q^3]) + O[q]^70; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x^2+A)^2/eta(x+A)/eta(x^3+A), n))}
CROSSREFS
A098151(n)=a(3n). A097197(n)=a(3n+1).
Cf. A293306.
Sequence in context: A106236 A270640 A139136 * A348218 A138002 A261877
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 11 2006
STATUS
approved