Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Feb 22 2016 03:06:50
%S 0,1,4,19,54,180,508,1533,4332,13041,37492,111367,326636,968802,
%T 2858460,8483290,25113618,74512947,220885446,655274837,1943117294,
%U 5763235194,17089323366,50673594159,150232437482,445359235627,1320070201468
%N Sum of the Wiener indices of all trees having n vertices.
%C C program, see the first Bomfim link, around the function Gen() of Gang Li & Frank Ruskey. - _Washington Bomfim_, Feb 23 2011
%H W. Bomfim, <a href="https://oeis.org/w/images/8/80/FreeWiener.txt">C program</a>
%H Stephan Wagner, <a href="http://www.math.tugraz.at/~wagner/Diss.pdf">Graph-theoretical enumeration and digital expansions: an analytic approach</a>, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb. 2006, page 31
%H Stephan Wagner, <a href="http://finanz.math.tu-graz.ac.at/~wagner/avwiener.pdf">On the average Wiener index of degree-restricted trees</a>, Australas. J. Combinat. 37 (2007) 187, Table 2
%e a(4)=19; indeed, there are 2 trees on 4 vertices: the path abcd with Wiener index 1+1+1+2+2+3=10 and the star tree on 4 vertices with Wiener index 1+1+1+2+2+2 = 9. - _Emeric Deutsch_, Feb 20 2016
%Y Cf. A000055.
%K nonn
%O 1,3
%A _N. J. A. Sloane_, Sep 23 2006
%E a(11)-a(27) from _Washington Bomfim_, Feb 23 2011
%E Name edited by _Emeric Deutsch_, Feb 20 2016