login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122680
Number of possible basketball games that end in a tie (n:n). Equivalently, the number of walks on the square lattice from (0,0) to (n,n) where the allowed steps are {(1,0),(2,0),(3,0), (0,1),(0,2),(0,3)}.
1
1, 2, 14, 106, 784, 6040, 47332, 375196, 3001966, 24190148, 196034522, 1596030740, 13044459766, 106961525744, 879512777006, 7249483605580, 59881171431050, 495545064567260, 4107666916668414, 34099685718629264, 283454909832384416, 2359069189033880228
OFFSET
0,2
LINKS
Moa Apagodu and Doron Zeilberger, FIVE Applications of Wilf-Zeilberger Theory to Enumeration and Probability; Local copy [Pdf file only, no active links]
M. Apagodu and D. Zeilberger, Maple package to generate recurrence; Local copy
M. Apagodu and D. Zeilberger, 6th order recurrence; Local copy
EXAMPLE
a(1) = 2 because the number of ways of getting the score to be (1,1) is
(0,0) -> (1,0) -> (1,1),
(0,0) -> (0,1) -> (1,1).
MAPLE
b:= proc(x, y) option remember; `if`(x<0 or y<0, 0,
`if`([x, y]=[0, 0], 1, add(b(x-i, y) +b(x, y-i), i=1..3)))
end:
a:= n-> b(n, n):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 24 2011
MATHEMATICA
b[x_, y_] := b[x, y] = If[x < 0 || y < 0, 0, If[{x, y} == {0, 0}, 1, Sum[b[x - i, y] + b[x, y - i], {i, 3}]]];
a[n_] := b[n, n];
a /@ Range[0, 30] (* Jean-François Alcover, May 13 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A343818 A160780 A279737 * A121122 A026293 A051708
KEYWORD
nonn,walk
AUTHOR
Doron Zeilberger, Oct 20 2006
STATUS
approved