Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 May 15 2024 01:31:20
%S 0,0,2,3,16,20,54,63,128,144,250,275,432,468,686,735,1024,1088,1458,
%T 1539,2000,2100,2662,2783,3456,3600,4394,4563,5488,5684,6750,6975,
%U 8192,8448,9826,10115,11664,11988,13718,14079,16000,16400,18522,18963,21296,21780
%N a(n) = n*floor(n/2)^2.
%C Szeged index of cycle of length n.
%H Vincenzo Librandi, <a href="/A122656/b122656.txt">Table of n, a(n) for n = 0..1000</a>
%H Janez Žerovnik, <a href="https://doi.org/10.1021/ci980148q">Szeged index of symmetric graphs</a>, J. Chem. Inf. Comput. Sci., 39 (1999), 77-80; <a href="https://scholar.archive.org/work/mjwr5vqtzjhwzlnmlpfuzsy4oq/access/wayback/http://home.postech.ac.kr:80/~arang/JCICS/1999/No.1/77.pdf">alternative link</a>.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-3,3,1,-1).
%F a(n) = (n*(1-(-1)^n+2*(-1+(-1)^n)*n+2*n^2))/8. G.f.: x^2*(x^4+x^3+7*x^2+x+2) / ((x-1)^4*(x+1)^3). - _Colin Barker_, Sep 20 2013
%F a(n) = n*A008794(n). - _R. J. Mathar_, Mar 04 2018
%F Sum_{n>=2} 1/a(n) = zeta(3)/2 + zeta(2) + 4*(log(2)-1). - _Amiram Eldar_, May 15 2024
%t Table[n Floor[n/2]^2,{n,0,50}] (* or *) LinearRecurrence[ {1,3,-3,-3,3,1,-1},{0,0,2,3,16,20,54},50] (* _Harvey P. Dale_, May 31 2014 *)
%o (Magma) [n*Floor(n/2)^2: n in [0..50]]; // _Vincenzo Librandi_, May 31 2014
%Y Cf. A002117, A013661, A008794.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Sep 22 2006