Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 04 2022 07:59:57
%S 1,2,3,4,5,6,7,8,9,10,12,14,16,18,20,22,24,26,28,40,43,46,49,52,55,58,
%T 61,64,67,90,94,98,102,106,110,114,118,122,126,160,165,170,175,180,
%U 185,190,195,200,205,250,256,262,268,274,280,286,292,298,304,360,367,374,381,388
%N a(n) = n_n, where "N_b" denotes "N read in base b": if N = Sum c_i 10^i then N_b = Sum c_i b^i.
%C The definition applies even if b < 10. Examples: 23_45 = 2*45 + 3 = 93, 23_2 = 2*2 + 3 = 7.
%D David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
%H N. J. A. Sloane, <a href="/A122618/b122618.txt">Table of n, a(n) for n = 1..10000</a>
%H David Applegate, Marc LeBrun and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0611293">Descending Dungeons and Iterated Base-Changing</a>, arXiv:math/0611293 [math.NT], 2006-2007.
%H David Applegate, Marc LeBrun, N. J. A. Sloane, <a href="https://www.jstor.org/stable/40391135">Descending Dungeons, Problem 11286</a>, Amer. Math. Monthly, 116 (2009) 466-467.
%p A122618 := proc(n)
%p local dgs;
%p dgs := convert(n,base,10) ;
%p add(op(i,dgs)*n^(i-1),i=1..nops(dgs)) ;
%p end proc: # _R. J. Mathar_, May 06 2019
%t f[n_] := FromDigits[ IntegerDigits@n, n]; Array[f, 64] (* _Robert G. Wilson v_, Sep 27 2006 *)
%o (PARI) A122618(n,d=digits(n))=d*vectorv(#d,i,n^(#d-i)) \\ _M. F. Hasler_, Apr 22 2015
%Y Differs from A083292 starting at n=100.
%Y Cf. A028897 (n_2), A122640 (2n_2).
%K nonn,base,easy
%O 1,2
%A _N. J. A. Sloane_, Sep 21 2006