login
A122562
a(n) = n^3 + 114 * n.
1
115, 236, 369, 520, 695, 900, 1141, 1424, 1755, 2140, 2585, 3096, 3679, 4340, 5085, 5920, 6851, 7884, 9025, 10280, 11655, 13156, 14789, 16560, 18475, 20540, 22761, 25144, 27695, 30420, 33325, 36416, 39699, 43180, 46865, 50760, 54871, 59204
OFFSET
1,1
LINKS
FORMULA
a(1)=115, a(2)=236, a(3)=369, a(4)=520, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4). - Harvey P. Dale, Mar 14 2015
From G. C. Greubel, Oct 29 2024: (Start)
G.f.: x*(115 - 224*x + 115*x^2)/(1 - x)^4.
E.g.f.: x*(115 + 3*x + x^2)*exp(x). (End)
MATHEMATICA
Table[n^3+114n, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {115, 236, 369, 520}, 40] (* Harvey P. Dale, Mar 14 2015 *)
PROG
(PARI) for(n=1, 50, print1(n^3+114*n, ", "))
(Magma) [n*(n^2+114): n in [1..40]]; // G. C. Greubel, Oct 29 2024
(SageMath) [n*(n^2+114) for n in range(1, 41)] # G. C. Greubel, Oct 29 2024
CROSSREFS
Sequence in context: A181931 A229324 A277806 * A063361 A340098 A208815
KEYWORD
nonn,easy
AUTHOR
Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 20 2006
STATUS
approved