login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let f(S) denote the interchange of 1's and 2's in S. Let S_0 = 1, S_{N+1} = f(S_N).S_N, where the dot indicates concatenation. Sequence gives S_0.S_1.S_2.S_3....
1

%I #25 Feb 13 2018 02:48:24

%S 1,2,1,1,2,2,1,2,1,1,2,1,2,2,1,1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,2,1,1,

%T 2,1,2,2,1,1,2,2,1,2,1,1,2,1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,1,2,2,1,2,

%U 1,1,2,2,1,1,2,1,2,2,1,2,1,1,2,1,2,2,1,1,2,2,1,2,1,1,2,2,1,1,2,1,2,2,1,1,2

%N Let f(S) denote the interchange of 1's and 2's in S. Let S_0 = 1, S_{N+1} = f(S_N).S_N, where the dot indicates concatenation. Sequence gives S_0.S_1.S_2.S_3....

%C An alternating triangular Morse-Thue sequence based on A010060 using {1,2} instead of {0,1} substitutions.

%H G. C. Greubel, <a href="/A122497/b122497.txt">Table of n, a(n) for the first 13 rows, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Thue-MorseConstant.html">Thue-Morse Constant</a>

%F a(n) = A059448(n) + 1. - _Filip Zaludek_, Dec 10 2016

%e The first few S_i are:

%e 1

%e 2, 1

%e 1, 2, 2, 1

%e 2, 1, 1, 2, 1, 2, 2, 1

%e 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1

%t ThueMorse[n_, b_] := Nest[Flatten[ # /. {1 -> {1, 2}, 2 -> {2, 1}}] &, {b}, n] a = Table[ThueMorse[n, 1 + Mod[n, 2]], {n, 0, 7}] Flatten[a]

%Y Cf. A010060, A014571, A014572, A074072, A074073.

%K nonn,tabf

%O 1,2

%A _Roger L. Bagula_, Sep 15 2006

%E Edited by _N. J. A. Sloane_, May 22 2007