Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:45:28
%S 17,457,617,1009,1777,2081,3137,4409,5897,9521,11657,14009,24481,
%T 25577,29009,39217,43441,47881,49409,62497,67801,75209,81017,85009,
%U 87041,93281,97561,104161,110977,120401,132721,135257,140401,159161,182041
%N Primes of the form 1+2*n+3*n^2.
%C 3*a(n)-2 is a square (of the form (3*k+1)^2). - _Vincenzo Librandi_, Mar 15 2013
%C Also primes which are the sum of 2 consecutive pentagonal numbers (A000326). - _Vicente Izquierdo Gomez_, Aug 13 2017
%H Vincenzo Librandi, <a href="/A122430/b122430.txt">Table of n, a(n) for n = 1..1000</a>
%t Select[Table[1 + 2 n + 3 n^2, {n, 500}], PrimeQ] (* _Vincenzo Librandi_, Mar 15 2013 *)
%o (Magma) [a: n in [1..300] | IsPrime(a) where a is 1+2*n+3*n^2]; // _Vincenzo Librandi_, Mar 15 2013
%o (PARI) is(n)=isprime(n) && issquare(3*n-2,&n) && n%3==1 \\ _Charles R Greathouse IV_, Sep 23 2013
%Y Cf. A086285 (numbers n such that 1+2n+3n^2 is prime).
%Y Subsequence of A056109.
%K nonn
%O 1,1
%A _Zak Seidov_, Oct 20 2006