Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Oct 10 2023 16:24:51
%S 0,2,3,4,5,7,7,8,9,13,11,14,13,19,22,16,17,21,19,26,32,31,23,28,25,37,
%T 27,38,29,38,31,32,52,49,58,42,37,55,62,52,41,56,43,62,66,67,47,56,49,
%U 65,82,74,53,63,94,76,92,85,59,76,61,91,96,64,112,92,67,98,112,106,71
%N a(n) is the sum of primes p for those k's, 2 <= k <= n, where gcd(k,n) = p^j > 1. (a(1) = 0.)
%H Antti Karttunen, <a href="/A122411/b122411.txt">Table of n, a(n) for n = 1..65537</a>
%F a(n) = phi(n) * Sum_{p|n} p/(p-1), where p is prime. - _Ridouane Oudra_, Feb 03 2023
%F a(n) = Sum_{d|n, d is a prime power} A020639(d)*phi(n/d). - _Ridouane Oudra_, Feb 13 2023
%F a(n) = Sum_{p|n, p prime} p^v(n,p)*phi(n/p^v(n,p)), where p^v(n,p) is the highest power of p dividing n. - _Ridouane Oudra_, Oct 06 2023
%e The integers k, 2 <= k <= 12, where gcd(k,12) is a power of a prime are 2,3,4,8,9 and 10. gcd(2,12) = 2^1, gcd(3,12) = 3^1, gcd(4,12) = 2^2, gcd(8, 12) = 2^2, gcd(9,12) = 3^1 and gcd(10,12) = 2^1. The sum of the prime bases of the prime-powers is 2+3+2+2+3+2 = 14. So a(12) = 14.
%p with(numtheory): a:= proc(n) local k, m := 0; for k from 2 to n do if nops(factorset(gcd(n, k))) = 1 then m:= m + factorset(gcd(n, k))[1]; end if; end do; return m; end proc: seq(a(n), n=1..80); # _Ridouane Oudra_, Feb 03 2023
%t f[n_] := Plus @@ First /@ Flatten[Select[FactorInteger[GCD[Range[n], n]], Length[ # ] == 1 &], 1]; Table[f[n], {n, 80}] (* _Ray Chandler_, Sep 06 2006 *)
%o (PARI) A122411(n) = { my(p=0); sum(k=2,n,if(isprimepower(gcd(n,k),&p),p,0)); }; \\ _Antti Karttunen_, Feb 25 2018
%Y Cf. A122410.
%K nonn
%O 1,2
%A _Leroy Quet_, Sep 02 2006
%E Corrected and extended by _Ray Chandler_, Sep 06 2006