login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122378
Numbers m such that m^2 > S(m)!, where S(m)! is the smallest factorial divisible by m.
5
2, 3, 6, 8, 12, 15, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 224, 240, 252, 280, 288, 315, 320, 336, 360, 384, 420, 448, 480, 504, 560, 576, 630, 640, 648, 672, 720, 756, 810, 840, 864, 896, 945, 960, 1008, 1080
OFFSET
1,1
COMMENTS
It is conjectured that m^2 < S(m)! for almost all m.
For each k > 1, at most tau(k!)/2 = A000005(k!)/2 are in the sequence because of that k. So at most Sum_{k = 1..m} tau(k!)/(2*m!) of the numbers up to m! are terms. This tends to 0 as m tends to infinity. - David A. Corneth, Dec 29 2019
EXAMPLE
15^2 = 225 > 120 = 5! = S(15)!, so 15 is a member.
MATHEMATICA
nmax = 1100;
Do[m = 1; While[!IntegerQ[m!/n], m++]; S[n] = m, {n, 1, nmax}];
Select[Range[nmax], #^2 > S[#]!&] (* Jean-François Alcover, Dec 04 2018 *)
PROG
(PARI) upto(n) = {my(res = List(), maxf = 1, olddiv, newdiv, n2 = n^2, cf = 1); while(maxf! < n2, maxf++); maxf--; olddiv = divisors(0!); newdiv = divisors(1!); for(i = 2, maxf, olddiv = newdiv; cf*=i; newdiv = divisors(cf); cans = setminus(Set(newdiv), Set(olddiv)); for(j = 1, #cans, if(cans[j]^2 > cf, if(cans[j] <= n, listput(res, cans[j]) , next(2) ); ) ) ); listsort(res); res } \\ David A. Corneth, Dec 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Sep 03 2006
STATUS
approved