Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jun 03 2019 08:01:07
%S 1,2,4,32,4096,201326592,3283124128353091584,
%T 26520146032764463901929624736590416838656,
%U 840987221884558487834659180201583257033385988411167452990072842049923846092011283152896
%N Numerators in infinite products for Pi/2, e and e^gamma (unreduced).
%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/21-24-2012/azarianIJCMS21-24-2012.pdf">Euler's Number Via Difference Equations</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, 2012, No. 22, pp. 1095 - 1102.
%H J. Baez, <a href="http://math.ucr.edu/home/baez/week230.html">This Week's Finds in Mathematical Physics</a>
%H J. Guillera and J. Sondow, <a href="https://arxiv.org/abs/math/0506319">Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent</a>, arXiv:math/0506319 [math.NT], 2005-2006; Ramanujan J. 16 (2008) 247-270.
%H J. Sondow, <a href="https://arxiv.org/abs/math/0401406">A faster product for Pi and a new integral for ln Pi/2</a>, arXiv:math/0401406 [math.NT], 2004.
%H J. Sondow, <a href="http://www.jstor.org/stable/30037575">A faster product for Pi and a new integral for ln(Pi/2)</a>, Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
%F a(n) = Product_{k=1..ceiling(n/2)} (2k)^binomial(n,2k-1).
%e Pi/2 = (2/1)^(1/2) * (4/3)^(1/4) * (32/27)^(1/8) * (4096/3645)^(1/16) * ...,
%e e = (2/1)^(1/1) * (4/3)^(1/2) * (32/27)^(1/3) * (4096/3645)^(1/4) * ... and
%e e^gamma = (2/1)^(1/2) * (4/3)^(1/3) * (32/27)^(1/4) * (4096/3645)^(1/5) * ....
%t a[n_] := Product[(2k)^Binomial[n, 2k-1], {k, 1, n/2 // Ceiling}];
%t Table[a[n], {n, 0, 8}] (* _Jean-François Alcover_, Nov 18 2018 *)
%Y Cf. A092798. Denominators are A122217. Reduced numerators are A122214.
%K frac,nonn
%O 0,2
%A _Jonathan Sondow_, Aug 26 2006
%E Offset and truncated term 840987221884... corrected by _Jean-François Alcover_, Nov 18 2018