login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x*(1 - 3*x + x^2) / (1 - x - 2*x^2 + x^3).
1

%I #17 Sep 19 2017 04:28:43

%S 1,-2,1,-4,0,-9,-5,-23,-24,-65,-90,-196,-311,-613,-1039,-1954,-3419,

%T -6288,-11172,-20329,-36385,-65871,-118312,-213669,-384422,-693448,

%U -1248623,-2251097,-4054895,-7308466,-13167159,-23729196,-42755048,-77046281,-138827181,-250164695,-450772776

%N Expansion of x*(1 - 3*x + x^2) / (1 - x - 2*x^2 + x^3).

%H P. Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden fields: a case for the heptagon</a>, Math. Mag. 70 (1997), no. 1, 22-31.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-1).

%F a(n) = A006053(n+1) - 3*A006053(n) + A006053(n-1). - _R. J. Mathar_, Nov 07 2011

%t M = {{0, -1, -1}, {-1, 0, 0}, {-1, 0, 1}}; v[1] = {1, 1, 1}; v[n_] := v[n] = M.v[n - 1]; a1 = Table[v[n][[1]], {n, 1, 50}]

%o (PARI) Vec( x*(1 - 3*x + x^2) / (1 - x - 2*x^2 + x^3) + O(x^50)) \\ _Michel Marcus_, Sep 19 2017

%K easy,sign

%O 1,2

%A _Gary W. Adamson_ and _Roger L. Bagula_, Oct 17 2006