login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122057 a(n) = (n+1)! * (H(n+1) - H(2)), where H(n) are the harmonic numbers. 1
0, 2, 14, 94, 684, 5508, 49104, 482256, 5185440, 60668640, 767940480, 10462227840, 152698210560, 2377651449600, 39350097561600, 689874448435200, 12773427499929600, 249097496204390400, 5103595024496640000, 109608397522606080000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Former title (corrected): A Legendre-based recurrence sequence. Let b(n) = ((4*n+2)*x -(2*n+1) )/(n+1)*b(n-1) - (n/(n+1))*b(n-2), where x=1, then a(n) = (n+1)!*b(n)/6. - G. C. Greubel, Oct 03 2019

REFERENCES

Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964, 9th Printing (1970), pp. 782

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..445

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

Let b(n) = ((-2*n-1) +(4*n+2)*x)/(n+1)*b(n-1) - (n/(n+1))*b(n-2) with x=1, then a(n) = b(n)*(n+1)!/6.

a(n) = (n+1)! * Sum_{k=3..n+1} 1/k. - Gary Detlefs, Jul 15 2010

MAPLE

a:=n-> (n+1)!*add(1/k, k=3..n+1): seq(a(n), n=1..30); # Gary Detlefs, Jul 15 2010

MATHEMATICA

x=1; b[1]:=0; b[2]:=2; b[n_]:= b[n]= ((-2*n-1) +(4*n+2)*x)/(n+1)*b[n-1] - (n/(n+1))*b[n-2]; Table[b[n]*(n+1)!/6, {n, 30}]

Table[(n+1)!*(HarmonicNumber[n+1] - 3/2), {n, 30}] (* G. C. Greubel, Oct 03 2019 *)

PROG

(PARI) vector(30, n, (n+1)!*(sum(k=1, n+1, 1/k) - 3/2) ) \\ G. C. Greubel, Oct 03 2019

(Magma) [Factorial(n+1)*(HarmonicNumber(n+1) - 3/2): n in [1..30]]; // G. C. Greubel, Oct 03 2019

(Sage) [factorial(n+1)*(harmonic_number(n+1) - 3/2) for n in (1..30)] # G. C. Greubel, Oct 03 2019

(GAP) List([1..30], n-> Factorial(n+1)*(Sum([1..n+1], k-> 1/k) - 3/2) ); # G. C. Greubel, Oct 03 2019

CROSSREFS

Cf. A001008, A002805.

Sequence in context: A033169 A090410 A066052 * A164891 A141146 A267913

Adjacent sequences: A122054 A122055 A122056 * A122058 A122059 A122060

KEYWORD

nonn

AUTHOR

Roger L. Bagula, Sep 14 2006

EXTENSIONS

If all terms are really negative, sequence should probably be negated. - N. J. A. Sloane, Oct 01 2006

Negated terms and edited by G. C. Greubel, Oct 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 20:59 EST 2022. Contains 358510 sequences. (Running on oeis4.)