login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121955
Expansion of x^2*(9 + 8*x - 8*x^2)/((1+x-x^2)*(1-2*x-4*x^2)).
1
0, 9, 17, 72, 209, 711, 2250, 7357, 23693, 76848, 248413, 804307, 2602122, 8421705, 27251521, 88190472, 285386041, 923535567, 2988612714, 9671371877, 31297187845, 101279874144, 327748481957, 1060616489147, 3432226859754
OFFSET
1,2
FORMULA
a(n) = a(n-1) + 7*a(n-2) + 2*a(n-3) - 4*a(n-4). - R. J. Mathar, Apr 04 2009
a(n) = ((-1)^n*Fibonacci(n+2) + 2^n*(5*Fibonacci(n+1) - 4*Fibonacci(n)))/3. - G. C. Greubel, Oct 07 2019
MAPLE
with(combinat); f:=fibonacci; seq(((-1)^n*f(n+2) + 2^n*(5*f(n+1) - 4*f(n)))/3, n=1..30); # G. C. Greubel, Oct 07 2019
MATHEMATICA
M = {{0, 1, 1, 1, 0, 1}, {1, 0, 1, 1, 1, 0}, {1, 1, 0, 0, 1, 1}, {1, 1, 0, 0, 0, 0}, {0, 1, 1, 0, 0, 0}, {1, 0, 1, 0, 0, 0}}; v[1]={0, 1, 1, 2, 3, 5}; v[n_]:= v[n]= M.v[n-1]; Table[Floor[v[n][[1]]], {n, 50}]
LinearRecurrence[{1, 7, 2, -4}, {0, 9, 17, 72}, 30] (* Harvey P. Dale, Jul 29 2013 *)
With[{F=fibonacci}, Table[((-1)^n*F[n+2] + 2^n*(5*F[n+1]-4*F[n]))/3, {n, 30}]] (* G. C. Greubel, Oct 07 2019 *)
PROG
(PARI) vector(30, n, f=fibonacci; ((-1)^n*f(n+2) + 2^n*(5*f(n+1) - 4*f(n)))/3) \\ G. C. Greubel, Oct 07 2019
(Magma) F:=Fibonacci; [((-1)^n*F(n+2) + 2^n*(5*F(n+1) - 4*F(n)))/3: n in [1..30]]; // G. C. Greubel, Oct 07 2019
(Sage) f=fibonacci; [((-1)^n*f(n+2) + 2^n*(5*f(n+1) - 4*f(n)))/3 for n in (1..30)] # G. C. Greubel, Oct 07 2019
(GAP) F:=Fibonacci;; List([1..30], n-> ((-1)^n*F(n+2) + 2^n*(5*F(n+1) - 4*F(n)))/3); # G. C. Greubel, Oct 07 2019
CROSSREFS
Cf. A000045.
Sequence in context: A319018 A101304 A146601 * A151793 A118852 A118527
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 01 2006
EXTENSIONS
New name (g.f. given by Mathar) by Joerg Arndt, Feb 06 2013
STATUS
approved