|
|
A121937
|
|
a(n) = least m >= 2 such that (n mod m) > (n+2 mod m).
|
|
1
|
|
|
3, 3, 4, 3, 3, 4, 3, 3, 5, 3, 3, 7, 3, 3, 4, 3, 3, 4, 3, 3, 11, 3, 3, 5, 3, 3, 4, 3, 3, 4, 3, 3, 5, 3, 3, 19, 3, 3, 4, 3, 3, 4, 3, 3, 23, 3, 3, 5, 3, 3, 4, 3, 3, 4, 3, 3, 29, 3, 3, 31, 3, 3, 4, 3, 3, 4, 3, 3, 5, 3, 3, 37, 3, 3, 4, 3, 3, 4, 3, 3, 41, 3, 3, 5, 3, 3, 4, 3, 3, 4, 3, 3, 5, 3, 3, 7, 3, 3, 4, 3, 3, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
at n = 1,4,7,... and n = 2,5,8,... a(n) = 3; also n = 3,15,27,... and n = 6,18,30,... a(n) = 4; all other terms are apparently primes. In case k=1, for all n, a(n) = least prime divisor of n+1.
|
|
LINKS
|
Table of n, a(n) for n=1..102.
|
|
MATHEMATICA
|
re=Reap[Do[Do[If[Mod[n, k]>Mod[n+2, k], Sow[k]; Break[]], {k, 2, n+2}], {n, 300}]][[2, 1]]
|
|
CROSSREFS
|
Sequence in context: A172515 A188590 A080038 * A003034 A091282 A202708
Adjacent sequences: A121934 A121935 A121936 * A121938 A121939 A121940
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Zak Seidov, Sep 03 2006
|
|
STATUS
|
approved
|
|
|
|