login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n*(e^Pi - Pi^e)).
3

%I #23 Sep 08 2022 08:45:27

%S 0,0,1,2,2,3,4,4,5,6,6,7,8,8,9,10,10,11,12,12,13,14,14,15,16,17,17,18,

%T 19,19,20,21,21,22,23,23,24,25,25,26,27,27,28,29,29,30,31,32,32,33,34,

%U 34,35,36,36,37,38,38,39,40,40,41,42,42,43,44,44,45,46,47,47,48,49,49

%N a(n) = floor(n*(e^Pi - Pi^e)).

%C Beatty sequence of A063504. - _R. J. Mathar_, Aug 11 2012

%H Ivan Panchenko, <a href="/A121930/b121930.txt">Table of n, a(n) for n = 0..10000</a>

%t With[{c=E^Pi-Pi^E},Floor[c*Range[0,80]]] (* _Harvey P. Dale_, Jan 06 2012 *)

%o (PARI) for(n=0,50, print1(floor(n*(exp(Pi) - Pi^exp(1))), ", ")) \\ _G. C. Greubel_, Nov 06 2017

%o (Magma) C<i> := ComplexField(); [Floor(n*(Exp(1)^Pi(C) - Pi(C)^Exp(1) )): n in [0..50]]; // _G. C. Greubel_, Nov 06 2017

%Y Cf. A121854, A121855, A121856, A121857.

%K nonn

%O 0,4

%A _Mohammad K. Azarian_, Sep 02 2006