login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor((Pi + e)*sqrt(n)).
2

%I #22 Sep 08 2022 08:45:27

%S 0,5,8,10,11,13,14,15,16,17,18,19,20,21,21,22,23,24,24,25,26,26,27,28,

%T 28,29,29,30,31,31,32,32,33,33,34,34,35,35,36,36,37,37,37,38,38,39,39,

%U 40,40,41,41,41,42,42,43,43,43,44,44,45,45,45,46,46,46,47,47,47,48,48

%N a(n) = floor((Pi + e)*sqrt(n)).

%H Vincenzo Librandi, <a href="/A121901/b121901.txt">Table of n, a(n) for n = 0..999</a> [Offset shifted by _Georg Fischer_, Sep 02 2022]

%t Table[Floor[(Pi + E) Sqrt[n]], {n, 0, 70}] (* _Vincenzo Librandi_, Feb 21 2013 *)

%o (PARI) for(n=0,50, print1(floor((exp(1)+Pi)*sqrt(n)), ", ")) \\ _G. C. Greubel_, Oct 28 2017

%o (Magma) C<i> := ComplexField(); [Floor((Exp(1) + Pi(C))*Sqrt(n)): n in [0..50]]; // _G. C. Greubel_, Oct 28 2017

%Y Cf. A059742 (Pi+e), A121854, A121855, A121856, A121857, A121900, A121902.

%K nonn,easy

%O 0,2

%A _Mohammad K. Azarian_, Sep 01 2006

%E Offset corrected by _Mohammad K. Azarian_, Nov 20 2008

%E Offset changed to 0 by _Georg Fischer_, Sep 02 2022