OFFSET
0,1
COMMENTS
Prime generating polynomial found by Jaroslaw Wroblewski and Jean-Charles Meyrignac. The first 55 absolute values (n=0..54) are primes.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Ed Pegg Jr., Math Games, Prime generating polynomials, MAA Online, July 17, 2006
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From G. C. Greubel, Oct 07 2019: (Start)
G.f.: (965201 - 6102720*x + 16122821*x^2 - 22787908*x^3 + 18179331*x^4 - 7764198*x^5 + 1387493*x^6)/(1-x)^7.
E.g.f.: (34747236 - 11214504*x + 1570248*x^2 - 118824*x^3 + 5022*x^4 -
111*x^5 + x^6)*exp(x)/36. (End)
MAPLE
seq((n^6 - 126*n^5 + 6217*n^4 - 153066*n^3 + 1987786*n^2 - 13055316*n + 34747236)/36, n=0..30); # G. C. Greubel, Oct 07 2019
MATHEMATICA
Table[(n^6 -126n^5 +6217n^4 -153066n^3 +1987786n^2 -13055316n +34747236)/36, {n, 0, 30}] (* modified by G. C. Greubel, Oct 07 2019 *)
PROG
(PARI) vector(30, n, my(m=n-1); (m^6 - 126*m^5 + 6217*m^4 - 153066*m^3 + 1987786*m^2 - 13055316*m + 34747236)/36) \\ G. C. Greubel, Oct 07 2019
(Magma) [(n^6 - 126*n^5 + 6217*n^4 - 153066*n^3 + 1987786*n^2 - 13055316*n + 34747236)/36: n in [0..30]]; // G. C. Greubel, Oct 07 2019
(Sage) [(n^6 - 126*n^5 + 6217*n^4 - 153066*n^3 + 1987786*n^2 - 13055316*n + 34747236)/36 for n in (0..30)] # G. C. Greubel, Oct 07 2019
(GAP) List([0..30], n-> (n^6 - 126*n^5 + 6217*n^4 - 153066*n^3 + 1987786*n^2 - 13055316*n + 34747236)/36); # G. C. Greubel, Oct 07 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Roger L. Bagula, Aug 31 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 05 2006
Offset corrected by G. C. Greubel, Oct 07 2019
STATUS
approved