login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that (5^k - 3^k)/2 = A005059(k) is prime.
53

%I #39 Jul 29 2023 20:53:18

%S 13,19,23,31,47,127,223,281,2083,5281,7411,7433,19051,27239,35863,

%T 70327,128941,147571,182099,866029

%N Numbers k such that (5^k - 3^k)/2 = A005059(k) is prime.

%C All terms are primes. Their indices are listed in A123704.

%C Corresponding primes are listed in A123705.

%C If it exists, a(17) > 125000. - _Robert Price_, Aug 15 2011

%C If it exists, a(21) > 1000000. - _Jon Grantham_, Jul 29 2023

%H OEIS Wiki, <a href="http://oeis.org/wiki/Primes_of_the_form_(a%5En%2Bb%5En)/(a%2Bb)_and_(a%5En-b%5En)/(a-b)">Primes of the form (a^n+b^n)/(a+b) and (a^n-b^n)/(a-b)</a>.

%H Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.

%F a(n) = prime(A123704(n)).

%t Do[f=(5^n-3^n)/2;If[PrimeQ[f],Print[{n,f}]],{n,1,300}]

%o (PARI) forprime(p=2,1e4,if(ispseudoprime((5^p-3^p)>>1),print1(p", "))) \\ _Charles R Greathouse IV_, Jun 16 2011

%Y Cf. A005058, A005059, A109347, A120612, A081186, A121824, A123704, A123705.

%K nonn,hard,more

%O 1,1

%A _Alexander Adamchuk_, Aug 31 2006, Oct 08 2006

%E More terms from _Farideh Firoozbakht_, Oct 11 2006

%E a(13)-a(16) from _Robert Price_, Aug 15 2011

%E a(17)-a(19) from _Kellen Shenton_, May 18 2022

%E a(20) from _Jon Grantham_, Jul 29 2023