Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:45:27
%S 1,5,65,1205,26465,628805,15424865,382964405,9550195265,238539648005,
%T 5961554097665,149021418519605,3725378557692065,93133051794619205,
%U 2328313585536338465,58207725254446186805,1455192101905494196865
%N Number of closed walks of length 2*n on the 5-cube.
%H G. C. Greubel, <a href="/A121822/b121822.txt">Table of n, a(n) for n = 0..700</a>
%H G. R. Franssens, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Franssens/franssens13.html">On a number pyramid related to the binomial, Deleham, Eulerian, MacMahon and Stirling number triangles</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
%H L. Reyzin, Mathoverflow, <a href="https://mathoverflow.net/questions/71736/number-of-closed-walks-on-an-n-cube">Number of closed walks on an n-cube</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-259,225).
%F a(n) = (25^n + 5*9^n + 10)/16.
%F G.f.: (1 - 30*x + 149*x^2)/(1 - 35*x + 259*x^2 - 225*x^3).
%F From _Peter Bala_, Nov 13 2006: (Start)
%F E.g.f.: cosh^5(x).
%F O.g.f.: 1/(1-5*1x/(1-4*2x/(1-3*3x/(1-2*4x/(1-1*5x))))) (continued fraction). (End)
%F (-1)^n*a(n) = Sum_{k=0..n} A086872(n,k)*(-6)^(n-k). - _Philippe Deléham_, Aug 17 2007
%F a(n) = (1/2^5)*Sum_{j = 0..5} binomial(5,j)*(5 - 2*j)^(2*n). See Reyzin link. - _Peter Bala_, Jun 03 2019
%t Table[(25^n +5*9^n +10)/16, {n,0,20}] (* _G. C. Greubel_, Jun 07 2019 *)
%o (PARI) a(n)=(25^n+5*9^n+10)>>4 \\ _Charles R Greathouse IV_, Jan 17 2012
%o (Magma) [(25^n +5*9^n +10)/16: n in [0..20]]; // _G. C. Greubel_, Jun 07 2019
%o (Sage) [(25^n +5*9^n +10)/16 for n in (0..20)] # _G. C. Greubel_, Jun 07 2019
%o (GAP) List([0..20], n-> (25^n +5*9^n +10)/16) # _G. C. Greubel_, Jun 07 2019
%Y Cf. A054879, A081294, A092812.
%K nonn,easy
%O 0,2
%A _Philippe Deléham_, Aug 27 2006
%E Corrected by _T. D. Noe_, Nov 07 2006