This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A121795 Expansion of -x*(x+1)^2*(x^8-2*x^7+2*x^6-3*x^5+3*x^4+2*x^2-x+1) / (x^12+6*x^6-1). 0
 1, 1, 1, 3, 5, 3, 5, 5, 5, 18, 31, 18, 31, 31, 31, 111, 191, 111, 191, 191, 191, 684, 1177, 684, 1177, 1177, 1177, 4215, 7253, 4215, 7253, 7253, 7253, 25974, 44695, 25974, 44695, 44695, 44695, 160059, 275423, 160059, 275423, 275423, 275423, 986328 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS FORMULA G.f.: -x*(x+1)^2*(x^8-2*x^7+2*x^6-3*x^5+3*x^4+2*x^2-x+1) / (x^12+6*x^6-1). - Colin Barker, Mar 15 2013 a(n) = +6*a(n-6) +1*a(n-12). - Colin Barker, Mar 15 2013 MATHEMATICA SL[n_, p_] := Module[{vars = Table[Unique[ a], {n^2}], iters, mat}, iters = Map[{#, 0, p - 1} &, vars]; mat = Partition[vars, n]; Reap[ Do[If[Det[mat, Modulus -> p] == 1, Sow[mat], Continue[]], Evaluate[Sequence @@ iters]]][[2, 1]]] a0 = SL[2, 2]; M[n_] := a0[[1 + Mod[n, Length[a0]]]] v[1] = {1, 1} v[n_] := v[n] = M[n].v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}] CROSSREFS Sequence in context: A142972 A020765 A112756 * A253027 A249384 A228446 Adjacent sequences:  A121792 A121793 A121794 * A121796 A121797 A121798 KEYWORD nonn,easy AUTHOR Roger L. Bagula, Aug 24 2006 EXTENSIONS New name from Colin Barker, Mar 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 12:30 EST 2019. Contains 329958 sequences. (Running on oeis4.)