login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Dimensions of the irreducible representations of the simple Lie algebra of type A2 (equivalently, the group SL3) over the complex numbers, listed in increasing order.
9

%I #36 Jul 04 2023 03:55:52

%S 1,3,6,8,10,15,21,24,27,28,35,36,42,45,48,55,60,63,64,66,78,80,81,90,

%T 91,99,105,120,125,132,136,143,153,154,162,165,168,171,190,192,195,

%U 210,216,224,231,234,253,255,260,270,273,276,280,288,300

%N Dimensions of the irreducible representations of the simple Lie algebra of type A2 (equivalently, the group SL3) over the complex numbers, listed in increasing order.

%C We include "1" for the 1-dimensional trivial representation and we list each dimension once, ignoring the fact that inequivalent representations may have the same dimension.

%C Numbers of the form (x * (x - y) * (x - z) + y * (y - x) * (y - z) + z * (z - x) * (z - y)) / 18 with x + y + z = 0 and x * y * z > 0. - _Michael Somos_, Jun 26 2013

%C Positive numbers of the form (r-s)*r*(r+s) where r and s are integers, i.e., the product of three integers in arithmetic progression. In the expression above, set x = r-s, y = r+s, and z = -x-y. - _Elliott Line_, Dec 22 2020

%D N. Bourbaki, Lie groups and Lie algebras, Chapters 4-6, Springer, 2002.

%D J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer, 1997.

%H Andy Huchala, <a href="/A121741/b121741.txt">Table of n, a(n) for n = 1..20000</a>

%H Andy Huchala, <a href="/A121741/a121741.java.txt">Java Program</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Special_linear_group">The special linear group</a>

%o (GAP) # see program at sequence A121732

%o (Python)

%o from itertools import count, islice

%o from sympy import divisors, integer_nthroot

%o def A121741_gen(startvalue=1): # generator of terms >= startvalue

%o for m in count(max(startvalue,1)):

%o for k in divisors(m<<1,generator=True):

%o p, q = integer_nthroot(k**4+(k*m<<3),2)

%o if q and not (p-k**2)%(k<<1):

%o yield m

%o break

%o A121741_list = list(islice(A121741_gen(),20)) # _Chai Wah Wu_, Jul 03 2023

%Y Equals A088915(n+1)/2.

%Y Cf. A121732, A121736, A121737, A121738, A121739, A104599, A121214, A162651.

%K nonn

%O 1,2

%A Skip Garibaldi (skip(AT)member.ams.org), Aug 19 2006, Aug 23 2006