login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum sequence A000522 then subtract 0,1,2,3,4,5,...
3

%I #25 Sep 15 2024 03:35:30

%S 1,2,6,21,85,410,2366,16065,125665,1112074,10976174,119481285,

%T 1421542629,18348340114,255323504918,3809950976993,60683990530209,

%U 1027542662934898,18430998766219318,349096664728623317,6962409983976703317,145841989688186383338,3201192743180799343822

%N Sum sequence A000522 then subtract 0,1,2,3,4,5,...

%C Let aut(p) denote the size of the centralizer of the partition p (see A339016 for the definition). Then a(n) = Sum_{p in P} n!/aut(p), where P are the partitions of n with largest part k and length n + 1 - k. - _Peter Luschny_, Nov 19 2020

%F a(n) = A006231(n) + 1 = A002104(n) - (n-1). - _Franklin T. Adams-Watters_, Aug 29 2006

%F E.g.f.: exp(x)*(log(1/(1-x)) - x + 1). - _Geoffrey Critzer_, Nov 07 2015

%e A000522 begins 1 2 5 16 65 326 ...

%e with sums 1 3 8 24 89 415 ...

%e so sequence begins 1 2 6 21 85 410 ...

%e .

%e From _Peter Luschny_, Nov 19 2020: (Start):

%e The combinatorial interpretation is illustrated by this computation of a(5):

%e 5! / aut([5]) = 120 / A339033(5, 1) = 120/5 = 24

%e 5! / aut([4, 1]) = 120 / A339033(5, 2) = 120/4 = 30

%e 5! / aut([3, 1, 1]) = 120 / A339033(5, 3) = 120/6 = 20

%e 5! / aut([2, 1, 1, 1]) = 120 / A339033(5, 4) = 120/12 = 10

%e 5! / aut([1, 1, 1, 1, 1]) = 120 / A339033(5, 5) = 120/120 = 1

%e --------------------------------------------------------------

%e Sum: a(5) = 85

%e (End)

%t f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Count[#, Except[1]] == 1 &]]] + 1, {n, 1, 20}] (* _Geoffrey Critzer_, Nov 07 2015 *)

%o (PARI) A000522(n)={ return( sum(k=0,n,n!/k!)) ; } A121726(n)={ return(sum(k=0,n-1,A000522(k))-n+1) ; } { for(n=1,25, print1(A121726(n),",") ; ) ; } \\ _R. J. Mathar_, Sep 02 2006

%o (SageMath)

%o def A121726(n):

%o def h(n, k):

%o if n == k: return 1

%o return factorial(n)//((n + 1 - k)*factorial(k - 1))

%o return sum(h(n, k) for k in (1..n))

%o print([A121726(n) for n in (1..23)])

%o # Demonstrates the combinatorial view:

%o def A121726(n):

%o if n == 0: return 1

%o f = factorial(n); S = 0

%o for k in (0..n):

%o for p in Partitions(n, max_part=k, inner=[k], length=n+1-k):

%o S += (f // p.aut())

%o return S

%o print([A121726(n) for n in (1..23)]) # _Peter Luschny_, Nov 20 2020

%Y Also the row sums of A092271.

%Y Cf. A000522, A006231, A002104, A339016, A339033.

%K easy,nonn

%O 1,2

%A _Alford Arnold_, Aug 17 2006

%E More terms from _Franklin T. Adams-Watters_, Aug 29 2006

%E More terms from _R. J. Mathar_, Sep 02 2006