login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and vertical height (i.e., number of rows) k (1 <= k <= n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
4

%I #30 Jul 22 2024 05:54:47

%S 1,1,1,1,4,1,1,10,12,1,1,22,57,39,1,1,46,216,293,163,1,1,94,741,1651,

%T 1664,888,1,1,190,2412,8181,12458,11143,5934,1,1,382,7617,37739,81255,

%U 102558,87066,46261,1,1,766,23616,166573,489753,823597,941572,773772,409149,1

%N Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and vertical height (i.e., number of rows) k (1 <= k <= n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

%C Row sums are the factorials (A000142).

%C T(n,1) = 1,

%C T(n,2) = 3*2^(n-2) - 2 = A033484(n-2) for n >= 2.

%C T(n,3) = A121693(n).

%C Sum_{k=1..n} k*T(n,k) = A121694(n).

%H Alois P. Heinz, <a href="/A121692/b121692.txt">Rows n = 1..141, flattened</a>

%H Elena Barcucci, Sara Brunetti and Francesco Del Ristoro, <a href="http://www.numdam.org/item?id=ITA_2000__34_1_1_0">Succession rules and deco polyominoes</a>, Theoret. Informatics Appl., 34, 2000, 1-14.

%H Elena Barcucci, Alberto Del Lungo, and Renzo Pinzani, <a href="https://doi.org/10.1016/0304-3975(95)00199-9">"Deco" polyominoes, permutations and random generation</a>, Theoretical Computer Science, 159, 1996, 29-42.

%F Rec. relation: T(n,1) = 1; T(n,n) = 1; T(n,k) = k*T(n-1,k) + 2*T(n-1,k-1) + Sum_{j =1..k-2} T(n-1,j) for k <= n; T(n,k) = 0 for k > n.

%F Rec. relation for the row generating polynomials P[n](t): P[1] = t, P[n] = tP[n-1] + (t+t^2+...+t^(n-1))#P[n-1] for n >= 2. Here # stands for the "max-multiplication" of polynomials, a distributive operation, following the rule t^a # t^b = t^max(a,b).

%F The second Maple program is based on these polynomials.

%e T(2,1)=1 and T(2,2)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 1 and 2 rows.

%e Triangle starts:

%e 1;

%e 1, 1;

%e 1, 4, 1;

%e 1, 10, 12, 1;

%e 1, 22, 57, 39, 1;

%e 1, 46, 216, 293, 163, 1;

%e ...

%p T:=proc(n,k) option remember; if k=1 then 1 elif k=n then 1 elif k>n then 0 else k*T(n-1,k)+2*T(n-1,k-1)+add(T(n-1,j),j=1..k-2) fi: end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form

%p with(linalg): a:=proc(i,j) if i=j then i elif i>j then 1 else 0 fi end: p:=proc(Q) local n,A,b,w,QQ: n:=degree(Q): A:=matrix(n,n,a): b:=j->coeff(Q,t,j): w:=matrix(n,1,b): QQ:=multiply(A,w): sort(expand(add(QQ[k,1]*t^k,k=1..n)+t*Q)): end: P[1]:=t: for n from 2 to 11 do P[n]:=p(P[n-1]) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=1..n) od; # yields sequence in triangular form

%t T[n_, k_] := T[n, k] = Which[k == 1, 1, k == n, 1, k > n, 0, True, k*T[n - 1, k] + 2*T[n - 1, k - 1] + Sum[T[n - 1, j], {j, 1, k - 2}]];

%t Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jul 20 2024 *)

%Y Cf. A000142, A033484, A121693, A121694.

%Y T(2n,n) gives A374794.

%K nonn,tabl

%O 1,5

%A _Emeric Deutsch_, Aug 17 2006