Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Oct 13 2022 12:28:49
%S 17119,19171,19342,19513,20197,21907,33193,34219,41914,51319,61921,
%T 101935,102619,112195,119035,119206,121942,125191,171019,171190,
%U 190171,190342,190513,191026,191710,192052,192223,193420,194104,195130,195301,197011,201970,204193
%N Numbers with sum of digits = 19, divisible by 19 and containing the string "19".
%C Conjecture: There are approximately k(n-1)(n-2)^(n-2) terms of this sequence up to 10^n, where k is about e/(19e-19). - _Charles R Greathouse IV_, Oct 13 2022
%H Chai Wah Wu, <a href="/A121669/b121669.txt">Table of n, a(n) for n = 1..12794</a> (all terms < 10^11)
%t d19Q[n_]:=Module[{idn=IntegerDigits[n]},Total[idn]==19&&MemberQ[ Partition[ idn,2,1],{1,9}]]; Select[19*Range[20000],d19Q] (* _Harvey P. Dale_, Jun 10 2014 *)
%o (Python)
%o def ok(n): s = str(n); return n%19==0 and '19' in s and sum(map(int, s))==19
%o print(list(filter(ok, range(205000)))) # _Michael S. Branicky_, Aug 06 2021
%Y Intersection of A008601, A166459 and A293879.
%K nonn,base
%O 1,1
%A Hassan Taifour (hytaifour(AT)yahoo.co.uk), Sep 10 2006
%E More terms from _Zak Seidov_, Sep 12 2006