

A121637


Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k 2cell columns (n>=1; 0<=k<=n1). A deco polyomino is a directed columnconvex polyomino in which the height, measured along the diagonal, is attained only in the last column.


2



1, 1, 1, 2, 3, 1, 7, 10, 6, 1, 29, 47, 33, 10, 1, 147, 265, 210, 82, 15, 1, 889, 1740, 1521, 697, 171, 21, 1, 6252, 13087, 12373, 6377, 1885, 317, 28, 1, 50163, 111066, 112016, 63261, 21390, 4407, 540, 36, 1, 452356, 1050608, 1118991, 680541, 255245, 60903
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

Row sums are the factorials (A000142). T(n,0)=A121638(n). Sum(k*T(n,k), k=0..n1)=A121639(n)


REFERENCES

E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 2942.


LINKS

Table of n, a(n) for n=1..51.


FORMULA

The row generating polynomials are P(n,t)=Q(n,t,1,1), where Q(1,t,x,y)=x, Q(2,t,x,y)=x+ty and Q(n,t,x,y)=Q(n1,t,ty,1/t)+(x+ty+n3)Q(n1,t,1,1) for n>=3.


EXAMPLE

T(2,0)=1 and T(2,1)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 0 and 1 2cell columns.
Triangle starts:
1;
1,1;
2,3,1;
7,10,6,1;
29,47,33,10,1;


MAPLE

Q[1]:=x: Q[2]:=x+t*y: for n from 3 to 11 do Q[n]:=sort(expand(subs({x=t*y, y=1/t}, Q[n1])+(x+t*y+n3)*subs({x=1, y=1}, Q[n1]))) od: for n from 1 to 11 do P[n]:=sort(subs({x=1, y=1}, Q[n])) od: for n from 1 to 11 do seq(coeff(P[n], t, j), j=0..n1) od; # yields sequence in triangular form


CROSSREFS

Cf. A000142, A121638, A121639, A121554.
Sequence in context: A085588 A118008 A173459 * A247370 A161847 A101175
Adjacent sequences: A121634 A121635 A121636 * A121638 A121639 A121640


KEYWORD

nonn,tabl


AUTHOR

Emeric Deutsch, Aug 13 2006


STATUS

approved



