OFFSET
1,4
COMMENTS
REFERENCES
E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
FORMULA
The row generating polynomials are P(n,t)=Q(n,t,1,1), where Q(1,t,x,y)=x, Q(2,t,x,y)=x+ty and Q(n,t,x,y)=Q(n-1,t,ty,1/t)+(x+ty+n-3)Q(n-1,t,1,1) for n>=3.
EXAMPLE
T(2,0)=1 and T(2,1)=1 because the deco polyominoes of height 2 are the horizontal and vertical dominoes, having, respectively, 0 and 1 2-cell columns.
Triangle starts:
1;
1, 1;
2, 3, 1;
7, 10, 6, 1;
29, 47, 33, 10, 1;
...
MAPLE
Q[1]:=x: Q[2]:=x+t*y: for n from 3 to 11 do Q[n]:=sort(expand(subs({x=t*y, y=1/t}, Q[n-1])+(x+t*y+n-3)*subs({x=1, y=1}, Q[n-1]))) od: for n from 1 to 11 do P[n]:=sort(subs({x=1, y=1}, Q[n])) od: for n from 1 to 11 do seq(coeff(P[n], t, j), j=0..n-1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 13 2006
STATUS
approved