Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Oct 18 2018 03:06:24
%S 1,2,5,10,20,36,65,110,185,300,481,752,1165,1768,2661,3946,5802,8430,
%T 12158,17360,24622,34632,48410,67188,92731,127182,173546,235508,
%U 318098,427536,572168,762318,1011660,1337136,1760876,2310338,3021008,3936848
%N Expansion of (eta(q^13) / eta(q))^2 in powers of q.
%C The g.f. is an eta-quotient and a modular function. - _Michael Somos_, Feb 19 2018
%H Seiichi Manyama, <a href="/A121597/b121597.txt">Table of n, a(n) for n = 1..10000</a>
%H Kevin Acres, David Broadhurst, <a href="https://arxiv.org/abs/1810.07478">Eta quotients and Rademacher sums</a>, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Modular_form#Modular_functions">Modular functions</a>
%F Euler transform of period 13 sequence [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, ...].
%F G.f. A(x) satisfies: 0 = f(A(x), A(x^2)) where f(u, v) = u^3 + v^3 - u*v - 4 * u*v * (u + v) - 13 * u^2*v^2.
%F G.f.: x * (Product_{k>0} (1 - x^(13*k)) / (1 - x^k))^2.
%F G.f. A(x) satisfies: 0 = f(A(x), A(x^3)) where f(u, v) = (u^2 - u*v + v^2)^2 - u*v * (1 + 6*u + 13*u^2) * (1 + 6*v + 13*v^2).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (13 t)) = (1/13) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A133099.
%F Convolution inverse of A133099.
%F a(n) ~ exp(4*Pi*sqrt(n/13)) / (sqrt(2) * 13^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015
%F a(1) = 1, a(n) = (2/(n-1))*Sum_{k=1..n-1} A284587(k)*a(n-k) for n > 1. - _Seiichi Manyama_, Apr 01 2017
%F A034318(n) = A133099(n) + 13 * a(n). - _Michael Somos_, Feb 19 2018
%e G.f. = q + 2*q^2 + 5*q^3 + 10*q^4 + 20*q^5 + 36*q^6 + 65*q^7 + 110*q^8 + ...
%t nmax = 40; Rest[CoefficientList[Series[x * Product[((1 - x^(13*k)) / (1 - x^k))^2, {k, 1, nmax}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Sep 07 2015 *)
%t QP = QPochhammer; s = (QP[q^13]/QP[q])^2 + O[q]^40; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 25 2015 *)
%t a[ n_] := SeriesCoefficient[ (QPochhammer[ q^13] / QPochhammer[ q])^2, {q, 0, n}]; (* _Michael Somos_, Feb 19 2018 *)
%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^13 + A) / eta(x + A))^2, n))};
%Y Cf. A034318, A133099.
%K nonn
%O 1,2
%A _Michael Somos_, Aug 09 2006