login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k 1-cell columns (0<=k<=n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.
3

%I #2 Mar 30 2012 17:36:10

%S 1,0,1,1,0,1,2,2,1,1,7,7,6,3,1,30,35,30,18,6,1,157,205,184,117,46,10,

%T 1,972,1392,1304,874,381,101,15,1,6961,10764,10499,7355,3470,1052,197,

%U 21,1,56660,93493,94668,68909,34622,11606,2542,351,28,1,516901,901900

%N Triangle read by rows: T(n,k) is the number of deco polyominoes of height n and having k 1-cell columns (0<=k<=n). A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column.

%C Row sums are the factorials (A000142). T(n,0)=A001053(n). Sum(k*T(n,k), k=0..n)=A121555(n).

%D E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.

%F The row generating polynomials are P(n,t)=Q(n,t,1), where Q(0,t,x)=1 and Q(n,t,x)=Q(n-1,t,1/t)+(tx+n-2)Q(n-1,t,1) for n>=1.

%e T(2,0)=1, T(2,1)=0, T(2,2)=1 because the deco polyominoes of height 2 are the vertical and horizontal dominoes, having, respectively, 0 and 2 columns with exactly 1 cell.

%e Triangle starts:

%e 1;

%e 0,1;

%e 1,0,1;

%e 2,2,1,1;

%e 7,7,6,3,1;

%e 30,35,30,18,6,1;

%p Q[0]:=1: for n from 1 to 10 do Q[n]:=sort(expand(subs(x=1/t,Q[n-1])+(t*x+n-2)*subs(x=1,Q[n-1]))) od: for n from 0 to 10 do P[n]:=subs(x=1,Q[n]) od: for n from 0 to 10 do seq(coeff(P[n],t,j),j=0..n) od; # yields sequence in triangular form

%Y Cf. A000142, A001053, A121555.

%K nonn,tabl

%O 0,7

%A _Emeric Deutsch_, Aug 08 2006