Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 20 2023 05:50:21
%S 13,203,1615,51595,412529,6599099,52788535,3378355987,27026481101,
%T 432421205841,3459361042977,110699432952143,885595037556565,
%U 14169517557800915,113356129507566775,14509583941597490435
%N Numerators of partial sums of a series for sqrt(2) + sqrt(3) involving Catalan numbers.
%C The corresponding denominators are 4*A120785(n).
%C Sqrt(2)+sqrt(3) = (4*sin(Pi/4) + 6*tan(Pi/6))/2 = 3.146264370 (maple10, 10 digits). This is the arithmetic mean of the areas of an 8-gon (octagon), resp. 6-gon (hexagon) inscribed, resp. circumscribed in a unit circle.
%C Popper (see the reference) argues that Plato knew about the sum of sqrt(2)+sqrt(3). This sum approximates Pi with a relative error of 0.15%. The two right triangles, one with side lengths (1,1/2,sqrt(3)/2) and the other with side lengths (sqrt(2),1,1) are used in Plato's Timaios [53d] to build four of the five regular polyhedra (Platonic solids).
%C The Taylor series for sqrt(2) = sqrt(1+1) and sqrt(3) = 3*sqrt(1-2/3) are used here. Therefore lim_{n->oo} r(n) = sqrt(2)+sqrt(3), with rationals r(n) defined below.
%D K. R. Popper, Die Welt des Parmenides, Piper, 2001, 2005. Ch. 8: Platon und die Geometrie (1950), pp. 326-337. English: The World of Parmenides, Routledge, London, New York, 1998.
%H Wolfdieter Lang, <a href="/A121503/a121503.txt">Rationals r(n), limit</a>.
%F a(n)= numerator(r(n)) with r(n):= 4-(sum(C(k)*(1+2^(k+1))/16^k,k=0..n)/4, n>=0, with C(k)=A000108(k) (Catalan numbers).
%e Rationals r(n): [13/4, 203/64, 1615/512, 51595/16384, 412529/131072, 6599099/2097152, 52788535/16777216,...].
%o (PARI) a(n) = numerator(4 - sum(k=0, n, binomial(2*k,k)/(k+1)*(1+2^(k+1))/16^k)/4); \\ _Michel Marcus_, Sep 20 2023
%Y Cf. A000108, A120785.
%K nonn,easy,frac
%O 0,1
%A _Wolfdieter Lang_, Aug 16 2006