Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Feb 14 2016 11:06:28
%S 1,2,1,6,3,1,18,9,4,1,53,28,12,5,1,154,85,38,15,6,1,443,253,117,48,18,
%T 7,1,1264,742,352,149,58,21,8,1,3582,2151,1041,451,181,68,24,9,1,
%U 10092,6177,3038,1340,550,213,78,27,10,1,28291,17600,8772,3925,1639,649,245,88,30,11,1
%N Triangle read by rows: T(n,k) is the number of k-cell columns in all directed column-convex polyominoes of area n (1<=k<=n).
%C Also number of ascents of length k in all nondecreasing Dyck paths of semilength n. A nondecreasing Dyck path is a Dyck path for which the sequence of the altitudes of the valleys is nondecreasing. Example: T(4,2)=9 because we have (UU)DD(UU)DD, (UU)DDUDUD, UD(UU)DDUD, UDUD(UU)DD, (UU)D(UU)DDD, (UU)DUDUDD, UD(UU)DUDD, where U=(1,1) and D=(1,-1); the ascents of length 2 are shown between parentheses; the other six nondecreasing Dyck paths of semilength 4 have no ascents of length 2. Sum of entries in row n = A038731(n-1). T(n,1)=A094864(n-1).
%H E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%H E. Barcucci, R. Pinzani and R. Sprugnoli, <a href="http://dx.doi.org/10.1007/3-540-56610-4_71">Directed column-convex polyominoes by recurrence relations</a>, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
%H E. Deutsch and H. Prodinger, <a href="http://dx.doi.org/10.1016/S0304-3975(03)00222-6">A bijection between directed column-convex polyominoes and ordered trees of height at most three</a>, Theoretical Comp. Science, 307, 2003, 319-325.
%F T(n,k) = Sum(j*T(n-j,k),j=1..n-k)+k*fibonacci(2n-2k-1).
%F G.f. of column k: z^k*(1-z)^2*(1-3z+z^2-kz^2+kz)/(1-3z+z^2)^2.
%e Triangle starts:
%e 1;
%e 2,1;
%e 6,3,1;
%e 18,9,4,1;
%e 53,28,12,5,1;
%p F:=k->z^k*(1-z)^2*(1-3*z+z^2-k*z^2+k*z)/(1-3*z+z^2)^2: T:=(n,k)->coeff(series(F(k),z=0,25),z^n): for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
%Y Cf. A038731, A094864.
%K nonn,tabl
%O 1,2
%A _Emeric Deutsch_, Aug 03 2006