%I #6 Mar 06 2018 11:37:30
%S 1,0,1,0,1,0,0,1,0,2,0,1,0,1,0,0,0,1,0,3,0,2,0,3,0,2,0,1,0,1,0,0,0,0,
%T 1,0,4,0,4,0,5,0,5,0,4,0,4,0,3,0,2,0,1,0,1,0,0,0,0,0,1,0,5,0,7,0,8,0,
%U 10,0,8,0,11,0,9,0,7,0,6,0,6,0,4,0,3,0,2,0,1,0,1,0,0,0,0,0,0,1,0,6,0,11,0,13
%N Triangle read by rows: T(n,k) is the number of nondecreasing Dyck paths of semilength n and area k (n>=1, k>=1).
%C Row n has n^2 terms. Row sums are the odd-subscripted Fibonacci numbers (A001519). Sum(k*T(n,k),k=1..n^2)=A061648(n).
%H E. Barcucci, A. Del Lungo, S. Fezzi and R. Pinzani, <a href="http://dx.doi.org/10.1016/S0012-365X(97)82778-1">Nondecreasing Dyck paths and q-Fibonacci numbers</a>, Discrete Math., 170, 1997, 211-217.
%F G.f.: G(q,x)=Sum(F[n]x^n, n>=0), where the q-analogs F[n] of the Fibonacci numbers are defined by F[0]=0, F[1]=q, F[n+2]=F[n+1]q^(2n+3)+Sum(F[n-k+1]q^((k+1)^2),k=0..n).
%e T(3,5)=2 because we have UDUUDD and UUDDUD, where U=(1,1) and D(1,-1).
%e Triangle starts:
%e 1;
%e 0,1,0,1;
%e 0,0,1,0,2,0,1,0,1;
%e 0,0,0,1,0,3,0,2,0,3,0,2,0,1,0,1;
%p P[1]:=q: for n from 2 to 10 do P[n]:=sort(expand(q^(2*n-1)*P[n-1]+sum(q^((k+1)^2)*P[n-k-1],k=0..n-2))) od: for n from 1 to 7 do seq(coeff(P[n],q,j),j=1..n^2) od; # yields sequence in triangular form
%Y Cf. A001519, A061648.
%K nonn,tabf
%O 1,10
%A _Emeric Deutsch_, Aug 02 2006