login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121402
Prime values of integers written in factorial base, interpreted as in base 10.
0
11, 101, 211, 311, 1021, 1201, 1301, 1321, 2011, 2111, 2221, 2311, 3001, 3011, 3121, 3221, 3301, 4001, 4021, 4111, 4201, 4211, 10111, 10211, 10301, 10321, 11311, 11321, 12011, 12101, 12211, 12301, 13001, 13121, 14011, 14221, 14321, 20011, 20021, 20101, 20201, 21001
OFFSET
1,1
EXAMPLE
a(1) = 11 = 1*(2!) + 1*(1!) = A007623(3)_10.
a(2) = 101 = 1*(3!) + 0*(2!) + 1*(1!) = A007623(7)_10.
a(3) = 211 = 2*(3!) + 1*(2!) + 1*(1!) = A007623(15)_10.
a(4) = 311 = 3*(3!) + 1*(2!) + 1*(1!) = A007623(21)_10.
a(5) = 1021 = 1*(4!) + 0*(3!) + 2*(2!) + 1*(1!) = A007623(29)_10.
a(6) = 1201 = 1*(4!) + 2*(3!) + 0*(2!) + 1*(1!) = A007623(37)_10.
a(7) = 1301 = 1*(4!) + 3*(3!) + 0*(2!) + 1*(1!) = A007623(43)_10.
a(8) = 1321 = 1*(4!) + 3*(3!) + 2*(2!) + 1*(1!) = A007623(47)_10.
MATHEMATICA
f[n_] := Module[{k = n, m = 2, r, s = {}}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, AppendTo[s, r]; m++]; FromDigits[Reverse @ s]]; Select[Array[f, 300], PrimeQ] (* Amiram Eldar, Feb 21 2024 *)
CROSSREFS
Cf. A007623 (Integers written in factorial base).
Sequence in context: A142317 A180406 A174884 * A156307 A057532 A193699
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Sep 06 2006
EXTENSIONS
More terms from Amiram Eldar, Feb 21 2024
STATUS
approved