Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Mar 30 2012 18:36:58
%S 1,2,5,11,28,70,184,486,1313,3576,9851,27319,76286,214120,603858,
%T 1709719,4857959,13845948,39572583,113380652,325576692,936796592,
%U 2700456452,7797587816,22550434989,65308288346,189388557677
%N Main diagonal of triangle A121400; also equals the partial sums of column 0 (A121399) of the same triangle.
%F G.f. A(x) = A(x^2*G)*G*(1-x^2*G)/(1-x), where G(x) is the g.f. of the Motzkin numbers (A001006): G = (1 + x*G + x^2*G^2).
%o (PARI) {a(n)=local(F=1+x+x^2,G=serreverse(x/(F+x^2*O(x^n)))/x,H=1+x,A); for(i=0,n,H=G*subst(H,x,x^2*G)+x^2*O(x^n)); A=(x*H-y*subst(H,x,x*y))/(x*subst(F,x,y)-y); polcoeff(polcoeff(A,n,x),n,y)}
%Y Cf. A121400 (triangle), A121399 (column 0), A001006 (Motzkin).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Jul 27 2006